WELCOME TO THE WORLD OF AUTOMATION
CONTENT

KEB
- The Company 4
- Solution 8
- Control System 10

SOFTWARE PLATFORM
- COMBIVIS studio 6 12
- COMBIVIS studio 6 - Safety 38
- COMBIVIS CONTROL Runtime 46
- COMBIVIS studio HMI 62
- COMBIVIS connect 84

PRODUCTS
- Product Overview 96
- Embedded Technology 98
- C6 HMI 100
- C6 HMI LC 106
- C6 S14 112
- C6 SMART 118
- C6 COMPACT 124
- C6 SAFETY PLC / I/O Module 130
- C6 ROUTER 136
- IPC Technology 144
- C6 E22 146
- C6 P34 160
- Industry monitors 174
- C6 Monitor 176
- C6 AMM - Arm Mounting Monitor 182
- EtherCAT® Fieldbus I/O 188
- C6 Remote I/O 192
AUTOMATION WITH DRIVE

Drive means movement - controlled movement requires overview and technology - the complete system provides the correct basis for high-performance, economics and efficiency.
KEB - three letters. Initials. An initial start in 1972. Karl-Ernst Brinkmann began his success story with six employees. Constantly growing, today KEB is a medium-sized company employing over 1200 people. And we have remained owner-managed for two generations - a detail which makes us proud.

Structured growth for over 40 years and strong ties to the region and economic area of Ostwestfalen-Lippe (OWL): reliability creates confidence, especially in our role as an employer. Long service records impressively document close connections to the company, our suppliers, partners and customers.

KEB develops mechanical and electronic solutions for modern drive and automation systems. The current product portfolio, including a wide range of control systems, results from the continuous refinement of technical innovations to reflect the needs and practical experiences of our customers.

Today, KEB has branches and production plants at strategic locations throughout Europe, North America and Asia, all connected with centralised data management, and identical engineering and design programs for the development of hardware and software.

That is not the end of the story but only the beginning! We are well positioned for the future.

KEB's broad orientation to the various sectors of mechanical engineering and plant construction gives us an accurate insight into the needs and trends of the market. In the past, this was based mainly on drive solutions but today KEB is an important global manufacturer of a wide product range.

In addition, we have set ourselves the target of supplementing the portfolio for automation with powerful systems solutions. Development is based on recognised technical standards, the core element of IPC technology with rapid Ethernet communication via EtherCAT®. We draw our stimulus and requirements for future-oriented, universal concepts and solutions from direct contact with customers.

Today, creative engineers and technicians develop powerful software and hardware, optimally prepared for the system and connected in a powerful engineering tool.

Complex automation technologies require reliable partnerships. KEB has the skills to find common, ideal solutions which achieve maximum flexibility and economic efficiency. Our main focus is on meeting your needs, from custom one-time custom projects to serial production.

Our team of specialists are available to help.
CONTROL & AUTOMATION
Flexible and economic automation solutions allow maximum use of technological developments in wide areas of application.

VISUALISATION, PLC, MOTION CONTROL, CNC, REMOTE MAINTENANCE
The KEB range offers extensive hardware solutions in combination with excellent software functionalities, from display through to the motion profile.

KEB – SUCCESS FROM HISTORY

Foundation of KARL E. BRINKMANN GMBH
Development, production and sale of electro-magnetic clutches and brakes

COMBIVERT 56
Production of our first generation of converters

KEB SCHNEEBERG established
Expansion of product range by internal development and production of gear motors
DRIVES

From frequency inverters to servo systems, dynamically connected in real-time communication or classic analog/digital. Universally designed for open and closed loop operation.

Optimum shaft performance for three-phase, synchronous, torque, linear or spindle motors.

DYNAMIC DRIVE CONTROLLER - SOFTWARE / HARDWARE IN THE SYSTEM

In single-axis or multi-axis technology. When required, also optimised as a customer or application device.

MOTORS & GEARS

Integral gear motors with flexible options - for three-phase asynchronous or synchronous servo motors.

OPTIMUM ADAPTATION OF ROTATION SPEED TO TORQUE - IN ALL INSTALLATION POSITIONS.

Modular system with a wide range of options for ideal adaptation of machine requirements in the form of spur gears, flat gears, worm spur gears, bevel spur gears and planet gears.
• A success story for over 40 years
• Technology-driven company with huge investment in research and innovation
• Quality and durability are our passion
• Competence is our product
• Our solutions are based on standards
• Open and communicative thanks to many interfaces and fieldbus systems
• From touch to movement
SOLUTION

The perception of a change, Industry 4.0. With KEB’s automation solution, you have the chance to be part of this change.

Our complete concept from the control level through to the drive technology offers standards, connectivity, communication and total flexibility thanks to the full openness of the solution. Despite our wide product range, our high level of integration and competence as a manufacturer in all levels of the automation world is impressive.

KEB offers both retention and freedom in the implementation of authorisation tasks. Support from people and intelligent functions created by people. Because intelligence is not only predicting the future, but reacting to it in advance.

This is supported by realtime designed control and Ethernet-based synchronous fieldbus systems in conjunction with dynamic drive engineering and impressive gear technology.
CONTROL SYSTEM

DISPLAY TYPE
- Capacitive touch, resistive touch
- 4:3 Format: 5.7”, 8.4”, 10.4”, 12.1”, 15”, 17” (5:4), 19” (5:4)
- 16:9 Format: 4.3”, 7” (15:9), 10.1”, 12.1” (16:10), 15.6”, 18.5”, 21.5”, 24”

FORMAT
- Panel
- Box
- Book Mount
- DIN Rail
- Arm Mount

PROTECTION CLASS
- IP66
- IP65
- IP20

LICENSES
- CE
- cULus
SOFTWARE

- Visualisation
- Control / Motion
- Remote maintenance

HARDWARE ARCHITECTURE

- SuperH RISC SH7269
- ARM Cortex A8 - iMX5
- ARM Cortex A9 - iMX6
- Intel® Bay Trail - Celeron®
- Intel® Skylake - Core i

OPERATING SYSTEM

- Windows Embedded Compact 7
- Windows Embedded Standard 7P

FIELDBUS SYSTEM

- Master EtherCAT®, CANopen
- Slave EtherCAT®, CANopen
- Profibus, Profinet
- Powerlink, EtherNet/IP
- MODBUS, ...
COMBIVIS studio 6 INTEGRATED DEVELOPMENT ENVIRONMENT

The intelligent automation suite from KEB combines an assistant-guided component selection, fieldbus configuration, drive parameterisation, IEC 61131-3 project generation and motion control.

Throughout the planning and layout phase, implementation of control sequences and multi-axis movement profiles, to start-up and fine tuning, the user is supported by a tool developed by experienced application engineers. With a foundation built on libraries, devices and template databases, rapid and simple solutions can be generated for a wide range of applications.
In KEB COMBIVIS Studio 6, IEC 61131-3 application development, drive parameterisation and HMI designers are combined into an efficient engineering tool for individual automation solutions.

The software allows easy access to programming to IEC 61131-3, and thus lays the foundations for independent and future-oriented source code with flexible choice of programming languages. Users benefit from comfortable “SmartCoding” with tools for declaration, error diagnosis, debugging and online data analysis.

Access to the KEB database also results in time-saving access to operating instructions, technical drawings and datasheets for project production and documentation.

With the KEB Utilities, we offer direct access to motion programming for real-time compatible, synchronized action drives or even multi-axis systems.

Integrated editors provide support for profile production in the sectors of cam discs, electronic gears, angle synchronization and the integration of G codes. KEB COMBIVIS studio 6 simplifies both simulation and visualisation of movement processes in the office environment, together with start-up and plant optimisation on-site.

Intuitive start-up assistants, digital 16-channel oscilloscope, tools for data backup and recovery, and extensive expert tweaks for optimised fine tuning of systems, complete the engineering software from the development of automation to after-sales service.
INTEGRATED DEVELOPMENT ENVIRONMENT

OBJECT-ORIENTED PROGRAMMING

STANDARD IEC LIBRARIES

APPLICATION LIBRARIES

COMMISSIONING ASSISTANTS

MESSAGE WINDOW

HIGHLIGHTS

- IEC 61131-3 application development
- Device and library database
- Product configuration

- Start-up and diagnosis assistant
- COMBIVIS studio HMI integration
- Document database
AUTOMATION WITH STANDARDS
COMBIVIS studio 6 was developed so that even complex tasks could be programmed with ease. For example, simply right-clicking with the mouse adds objects, selects object properties and changes their settings. Using the software, users are able to work with standard development environments without further investment. These environments include the robust .NET framework.

Because KEB uses the same basic framework as Microsoft Visual Studio, worldwide language support, a standardised user interface, data access and Internet applications are already integrated. Working with the standardised languages of IEC 61131-3 clears the way for reusing previously developed code in future projects.

Because PLC Open Motion Control is used as the motion design standard, compatible devices which support clearly defined movement function blocks can be used. This continuity creates the basis for programming codes which are truly manufacturer-independent. The concept is flanked by faster engineering due to shorter integration and the reuse of already programmed codes.

Designed for industrial automation, COMBIVIS studio 6 offers everything users need for programming control systems - including know-how protection. Our software securely encrypts the project codes running on the devices so that no one can read the process knowledge behind them at a later date.

For efficient, time-saving engineering, again source code must be archived in a way which allows later processing to re-use the original library and compiler versions without time-consuming searching. For example, when, during future maintenance and upgrades, a technician needs direct access to the control system on site, the password-protected archive will be directly available in the device memory.

The platform applies a user-friendly project navigator for this work, which allows simple access to multiple devices and the definition of data exchange between these. Directories for organizing all objects, user-defined toolbars, keyboard shortcuts and standard Windows functions such as Search and Replace, are just some examples of this user-friendly development environment...
IEC 61131-3: AUTOMATION WITH STANDARDS

PROGRAM
Main program

FUNCTION BLOCK
Code with several inputs and one output, with no memory

POU_1
Local variables

FUNCTION
Code with several inputs and one output, with no memory

GVL
Global variable list available in all POU

TASK MANAGER
1 POU_1
2 ...
3 ...
4 POU_xxx
IEC 61131-3 EDITORS

The development level of COMBIVIS studio 6 offers flexible programming possibilities, complete on-line and off-line functions, compilers and components for configuration, visualisation and diagnosis. Thanks to user feedback, all editors are designed practically for simple and time-saving use. The KEB software uses the international standardised programming languages of IEC 61131-3 as a basis:

- Ladder Diagram (LD)
- Function Block Diagram (FBD)
- Instruction List (IL)
- Continuous Function Chart (CFC)
- Sequential Function Chart (SFC)
- Structured Text (ST).

In both on-line and off-line mode, the code can be switched between LD, FBD and IL at the press of a key - and is then converted automatically. Functions, actions and methods are supported and can be programmed in a different language from the higher-level program organisation unit (POE). Function blocks and commands can be accessed directly or via drag and drop from a toolbox.

In addition, COMBIVIS studio 6 offers intelligent input assistants, automatic fill-in functions and expanded IntelliSense functionality. Context-sensitive commands are available in development of the application by right-clicking with the mouse or by automatic production of language concepts. There are no POE limits within the platform - only the hardware resources set the limits.

HIGHLIGHTS

- The six most common programming languages worldwide
- Object-orientation at high language level
- Extensive toolboxes and standard libraries
- Modern Smartcoding functions
Thanks to the high-level language concept, Structured text (ST) of IEC 61131-3 is mainly recommended for programming loops, state machines and process sequences. If programmers are already familiar with languages such as "C", "PASCAL" and "BASIC", they quickly become familiar with ST because the editor offers functions already known from other high-level language tools.

For example, if an IF code block must be produced, the editor automatically adds the necessary END_ and includes the code place in the block, so that the next code line can be entered. If the programmer places the cursor on the IF keyword, the associated END_IF is automatically highlighted which makes programming of long nested conditions much easier. In addition, code blocks can be flipped open and closed by simply clicking on the "-" or "+" symbols on the left next to the initial instruction.

HIGHLIGHTS

- Compact program code
- Programming of loops, state machines, process sequences
- All advantages of a modern high-level language
The Instruction list (IL) in IEC 61131-3 is one of the best-known programming languages because it has been used since the very beginning of automation. IL is a simple language based on an Accumulator-Load-Save model. In each process, first via the LD command, a value is loaded into the accumulator and then the desired process is retrieved. This result is then written to the accumulator and can be stored in a variable via the ST command. The IL Editor supports all IEC 61131-3 operators, irrespective of whether the processes have one or more inputs and outputs. As in the other standard languages, commands, negations, jumps and set/reset commands are available.

HIGHLIGHTS

- Machine-level assembler language
- Register commands and jumps
- Retrofit applications
FUNCTION BLOCK DIAGRAM (FBD)

The graphic editor of the Function block diagram language (FBD) is a combination of a step-like Ladder diagram and a compact function block diagram. If the user inserts a new element, the connecting lines are reated automatically. The FBD toolbox also allows programming by drag-and-drop.

Inputs can be defined or negated without additional function blocks for rising or falling edges. Outputs support set, reset and jump configurations. As in the LD editor, an activation input (IN/INO) can be added to the function block so that this is only executed if desired.
LADDER DIAGRAM (LD)

Also known as contact logic or relay logic, Ladder diagram (LD) shows the code as electrical circuits. The easy-to-follow depiction of contacts and relays makes LD popular with control system programmers in particular. Boolean expressions are shown by the connection of relay contacts with coils from the “Power Rail” on the left to the “Common Rail” on the right.

A function-rich toolbox divided into Boolean, mathematical and logic operators, allows the programmer to use the KEB control system as a standard PLC - but with the performance ability of a programmable automation controller.
Sequential function chart (SFC)

As a graphic language, Sequential function chart (SFC) in practice takes the form of a flow diagram. The tasks of a programming sequence are clearly broken down and shown as individual steps or blocks of program code. Defined actions are performed in the steps as long as the step is active within a program run-through.

Sequential function chart is used to define transitional conditions which must be resolved during the transition from one step to the next. Several steps can be performed in parallel or in alternative branches. The programming language can be selected independently between step and transition. KEB’s SFC editor supports all instructions defined by the IEC standard for programming steps in sub-programs and transitions.

HIGHLIGHTS
- Graphic state machines
- Definition of steps and transitions
- Programming of source codes of subprograms possible in any language
Continuous function chart (CFC) is primarily a different implementation of the Function block diagram (FBD). In comparison to other step-based editors, the CFC user can also program continuous connections, for example feedback loops. The connection between inputs, operators and outputs are not automatic but the result of individual programming. The execution sequence can be adapted so that the user always retains complete control of the program.

This is indicated by small green figures in the top right-hand corner of each function block. The toolbox contains common tools such as comments, set/reset outputs, negation and jumps. In general, as a graphic language within IEC 61131-3, CFC lays the foundation for developers to depict their code in the best visual form. Automatic instance recognition and connections between preselected pins are also available.

Highlights

- Flexible graphic layout over entire drawing surface
- Cross connection and feedback options
- Perfect for regulator structures and interlinked modules
KEB’s COMBIVIS studio 6 automation platform offers the programmer numerous assistance systems. For example, the input and auto-declaration assistant shows the modules currently available and inserts these in compliance with the syntax. Thanks to functions such as auto-formatting, indentation, automatic code completion and syntax highlighting, KEB shortens the engineering times and at the same time makes it easier for beginners to learn IEC 61131-3 programming.

Highlighting errors before compiling, with the display of tool tips for error correction, is particularly helpful here.
Via static analysis, the project can be checked for unused variables or duplicated memory access at any time. Refactoring makes it easier to change object-related module names and update programming standards at a later date.
COMBIVIS studio 6

DEBUGGING AND WATCHING

In order for the programming developed in engineering to function securely in practice, intensive test routines are necessary. The function scope of COMBIVIS studio 6 includes, in parallel to user-friendly programming tools, powerful tools for debugging and start-up. Even in structurally sophisticated projects with a high number of subprograms and variables, rapid diagnosis and error correction is possible thanks to the debugging and watching function. Programmable stop points allow step-by-step sequence analysis.

The Call stack shows the retrieval order of different program parts. Sequence control allows the variable values for the runtime to be displayed simultaneously for each code line. If a variable is used in several program parts, the cross reference list helps switch directly between all points of use and also shows the access type, line number and declaration location.

HIGHLIGHTS

- Read, write and assign values on-line
- Programmable stop points
- Sequence control
- Project comparison
- Call stack
- Cross reference list
- Event logger
- User-defined watching window
- Binary, decimal and hexadecimal switching
- Multichannel trends with trigger function
The trace function is designed for further analysis of multichannel diagrams in a ring memory with cycle precision. This creates the basis for comparing displayed nominal and actual values, or optimising run profiles with simultaneous depiction of position, speed, acceleration and jump. Arbitrary variable states can also be used as a trigger condition. Each channel is scaled automatically or manually. The value tables can be exported and imported for further processing or back-up.
COMBIVIS studio 6

SIMULATION

Early testing and error location, instead of only beginning code debugging on start-up in the customer’s system: because the real hardware is not usually available during programming, simulation tools are more important than ever. They create the basis for concentrating on the performance of the machine during start-up, instead of on the reliability of the software. COMBIVIS studio 6 therefore provides several simulators. One of these is tailored for PLC logic in which variable values and source code behaviour can be tested and validated. COMBIVIS studio 6 also offers modern tools for simulation of the axis movement on the same PC on which the IDE is located. So the programmer has the opportunity to test not only the PLC logic but also the machine behaviour - even when the motor and communication system are not connected.
ASSISTANTS

On-line and off-line assistants are a firm component of COMBIVIS studio 6 - above all to make the engineering easier and quicker. The Motor configuration assistant for example allows access to the KEB motor database, and databases of other manufacturers or programmers. Also third party databases can easily be shared with other COMBIVIS studio 6 users. In addition, the programmers can produce complete process data mapping configurations using the Process data start assistant.

A second example of an efficiency-improving assistant is the Anti-cogging assistant, which was developed using KEB’s full experience in the field of movement guidance. The background: in many cases, because of the internal structure and magnet alignment, cogging torque can occur in permanent magnet motors which is transmitted to the control loop and leads to instability or loss of precision. Using the Anti-cogging assistant, the user can effectively eliminate cogging torque in permanent magnet motors.
COMBIVIS CONFIGURATOR

The COMBIVIS Configurator is a tool for simple modelling of KEB automation systems. Various assistants and the intuitive graphic user interface ensure comfortable and rapid working. The configuration produced can be used in various ways after completion. Firstly it can be integrated 1:1 into a technical documentation or the parts list for a bid. Secondly, COMBIVIS or COMBIVIS studio projects can be generated from this. The configurator also simplifies access to the technical data and documentation of all devices from the KEB world of drive and automation.
INTEGRATED DEVELOPMENT ENVIRONMENT

HIGHLIGHTS

• Access to current product database
• Intuitive assistant for product selection
• Access to technical data and documentation
• Display of all interfaces and connection components
• Extensive export function for parts lists
• Automated project generation
COMBIVIS studio 6

COMBIVIS STUDIO HMI: INTEGRATED VISUALISATION

With the aim of making professional visualisation as simple as possible, COMBIVIS studio HMI offers an extensive template library, powerful tools, and rapid and direct access to the process variables of the associated controller. At the same time, complex projects call for the facility for parallel processing of control and visualisation projects by several developers, beyond the limits of purely integrated solutions.

By linking visualisation and control projects, COMBIVIS studio 6 allows automated variable and driver exchange and parallel processing in our own SCADA designer COMBIVIS studio HMI.

HIGHLIGHTS

- Automated driver and variable exchange
- Parallel development of HMI and control projects
- One HMI and multiple control sources
- Higher-level archiving possibilities
DOCUMENT DATABASE - ALWAYS UP-TO-DATE

Two clicks to documentation: The KEB document database gives the user a versatile and flexible knowledge database. Individually selected content is then also available off-line, for example during start-up. The database furthermore informs users of program updates and new content which can be updated automatically if required.

Simply right-clicking on a parameter immediately reveals the underlying detailed description. In addition all documents and files belonging to the product can be listed.

1. Step

<table>
<thead>
<tr>
<th>Group/Parameter Name</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Watch displayed parameters P5</td>
</tr>
<tr>
<td>M2</td>
<td>Watch optional parameters P6</td>
</tr>
<tr>
<td>M3</td>
<td>Output width automatically P7</td>
</tr>
<tr>
<td>M4</td>
<td>Copy / Control-C</td>
</tr>
<tr>
<td>M5</td>
<td>Copy (activated) Control-Shift-C</td>
</tr>
<tr>
<td>M6</td>
<td>Display group shortcuts P8</td>
</tr>
<tr>
<td>M7</td>
<td>Create parameter list from selection</td>
</tr>
<tr>
<td>M8</td>
<td>Common OK (K1): F Code =</td>
</tr>
</tbody>
</table>

The faults are coded according to the following table:

<table>
<thead>
<tr>
<th>Fault Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: No error</td>
</tr>
<tr>
<td>2: Short circuit, power supply defective</td>
</tr>
<tr>
<td>3: Overcurrent pu</td>
</tr>
<tr>
<td>4: Overcurrent analog</td>
</tr>
<tr>
<td>5: Overpotential (C)</td>
</tr>
<tr>
<td>6: Overpotential (D)</td>
</tr>
</tbody>
</table>

2. Step

HIGHLIGHTS
- Automatic online update
- Individual selection of off-line content
- Direct search function by parameter documents
COMBIVIS 6: START-UP, DIAGNOSIS AND OPTIMISATION OF DRIVES

Version 6 of the well-known KEB parameterisation diagnosis tool COMBIVIS 6 offers new tools for easier start-up and optimisation of drives. Assistants guide the user intuitively through the basic set-up of a drive. In expert view, extensive additional settings also create the basis for further fine tuning, to adapt the drive more closely to the respective application. Assistants are available for:

- Start-up
- Motor
- Encoders
- Encoderless regulated operation
- Drive control
- Safety
- Fieldbus analysis
- Cogging compensation

COMBIVIS 6 also contains a 16-channel oscilloscope, back-up functions for parameter back-up, and rapid online/off-line comparison.
KEB CHANNEL HANDLER - MULTI-FIELDBUS GATEWAY

It’s always good to understand each other. The KEB channel handler overcomes potential language barriers as the gateway provides the translation between the Ethernet world and the various fieldbus telegrams. The idea is to be able to simply connect Ethernet-based controllers with fieldbus devices - independent of fieldbus and topology.

The KEB channel handler clears the way for routing through numerous network layers to allow comfortable access to all subscribers of an automation system.

For example, without additional hardware, the software converts Ethernet queries into fieldbus telegrams with the correct node address. This creates the basis for diagnosis or parameterisation. Also, modular IEC 61131-3 components can be embedded in the PLC program in parallel to the application.

Because the parameter channel is generally used for the translation, the contact functions even during a synchronous process data communication in multi-axis applications.

HIGHLIGHTS

- Direct access to drive parameters by the network and fieldbus topology
- Multi-fieldbus gateway for EtherCAT®, CAN open, HSPS, Ethernet, serial RS232/RS458, Profinet, Profibus, Interbus, Powerlink
- Flexible software solution
- Access even in synchronous operation
To complete the automation concept, KEB offers a fully integrated safety solution based on the development environment CODESYS SAFETY in the COMBIVIS studio 6 automation platform. This total solution allows freely programmable development for applications with safety standards IEC 61508 SIL3 and DIN EN ISO 13849-1 PLe.

To allow maximum flexibility, based on existing EtherCAT® topology and without additional wiring, KEB offers the safety protocol Fail Safe over EtherCAT® (FSoE).
FUNCTIONAL SAFETY (FS)

Functional safety is one of the key topics of automation technology. As a result of the Machinery Directive and the Product liability law, the machine and plant construction industry is facing a new situation.

One consequence is that safety plays a key role in all components of a modern machine. In order to ensure that safety is not achieved at the cost of handling, suitable operating concepts are required to ensure that safe machines also remain competitive.

HIGHLIGHTS

- Integrated modular safety concept
- Safety over EtherCAT® (FSOE)
- Cross communication between PLC and safety PLC
- On-line monitoring of secure and insecure data
- SIL3 to IEC 61508
- PLe to DIN EN ISO 13849

SAFETY CONCEPT

In general, functional safety must be taken into account in automation from the control system, at KEB this has led to development of whole system solutions in which safety functions are extensively integrated.
KEB SAFETY SYSTEM

We have expanded the C6 I/O module system. Thanks to safe inputs and outputs, the KEB automation platform can now be used for motion control applications with sophisticated safety requirements. Another notable point is that separate wiring of safety circuits is no longer required thanks to the integrated safety I/Os. Safe signals are transmitted together with the standard signals to the C6 Safety control system in the EtherCAT® protocol. This integration is based on the TÜV-certified safety protocol FSoE (Fail Safe over EtherCAT®). The KEB Safety System fulfills SIL 3 of IEC 61508.

FSoE: SAFETY OVER ETHERCAT

In parallel with the EtherCAT® development, a special protocol for functional safety has also been produced. The protocol and implementation of Safety over EtherCAT® (FSoE) are TÜV-certified and comply with Safety Integrity Level 3 (SIL3) to IEC 61508. Safety over EtherCAT® has been standardised internationally in IEC 61784-3-12 since 2010. Safety over EtherCAT® does not impose any restriction on transmission speed and cycle time, since EtherCAT® is used as a single-channel communication medium. The transport medium is regarded as the “Black Channel” and not included in the safety consideration.
SAFETY PLC: CONTROL SYSTEM TECHNOLOGY WITH INTEGRATED SAFETY

Thanks to the flexible software architecture in which safety functions are an integral part of the user software, different safety functions can be freely programmed in the Safety PLC of KEB using the standardised languages of IEC 61131-3 (Codesys). The architecture of the Safety PLC is prepared for certification to the highest safety standards (SIL 3 to IEC 61508, PLe to DIN EN ISO 13849).

By design, the safety controller is adapted to the real-time environment of EtherCAT® and can be expanded universally in conjunction with KEB’s modular I/O system. The decentralised structure is designed for direct installation in machines and plants without additional wiring complexity and at the same time with little space requirement and rapid installation.

For the user, the Safety PLC meets all the conditions for implementing a safety concept without further certification expense. This includes the possibility of equipping existing plants with modern safety functions in a short time.

SAFETY I/O: CREATES MORE POSSIBILITIES

With the Safety I/O modules, KEB lays the foundations for extending the safety chain and integrating more tasks in the automation environment.

With the Safety I/O modules, KEB lays the foundations for extending the safety chain and integrating more tasks in the automation environment.

Modular terminal systems as inputs and outputs form the interfaces for signals or process parameters. Within the FSoE safety protocol, a Safety I/O module is now available which integrates safety chain tasks in the existing modular top-hat rail terminal system.

Safety I/Os fulfil SIL 3 to DIN EN ISO 61508, or Performance Level e (PLe) of DIN EN ISO 13849. In combination with the Safety PLC, the module can be used for the following safety functions:

- 4 x emergency off switch
- 4 x contact emitter
- 2 x light grid
- 2 x one-hand operation
- 2 x independent output functions
STANDARD PROGRAMMING WITH CODESYS SAFETY

The C6 Safety PLC is programmed with a certified plug-in which is fully integrated in the KEB COMBIVIS studio 6 development environment. The safety controller constitutes a sub-node of the standard controller. The entire system is programmed with the FBD Safety Editor in IEC61131-3 and certified modules to PLC Open Safety.

Developers can use an extensive library in CODESYS Safety. Prepared function modules make work easier and engineering faster - and hence more economic.

The software also offers additional functions for securing the safety function. These include change tracking, safe signal flow, safe versioning (pinning), separation of safe mode and debug mode.
EDITOR FOR THE KEB DRIVE SAFETY MODULE

With the safety module editor, KEB offers users in the COMBIVIS 6 engineering environment a tool for configuration and analysis of the safety modules. The functions and values necessary for an application can be set off-line in order to be transmitted to the module on completion in just a few clicks. A useful feature for series applications or in service, is that the parameter lists produced with the safety module editor can be called at any time and transmitted again to further modules. A checksum ensures that the data has been correctly received. The data access itself can be freely configured and secured with password-dependent user rights.

- Part of the COMBIVIS 6 development environment
- Safe transfer of configuration data
- Rapid parameter list download for series machine construction
- Scalable user rights with six different password levels
- Status and error messages:
 - global status
 - status of safety functions
 - error status
 - status of inputs and outputs
 - current rotation speed
 - current position
 - system time and date

Safe parameterisation

Produce parameter list
HIGHLIGHTS

- Part of COMBIVIS 6
- Safe transfer of configuration data
- Setting for series cases by parameter list download
- User rights with six different password levels

Status of safety module

- **Part of COMBIVIS 6**
- **Safe transfer of configuration data**
- **Setting for series cases by parameter list download**
- **User rights with six different password levels**

Safety module protocol

- **Status of safety module**
- **Safety module protocol**

INTEGRATED DEVELOPMENT ENVIRONMENT
CONTROL RUNTIME FUNCTIONALITY

CONTROL Basis for PLC and motion control functionality. This symbol is placed by the hardware available.

PRO Professional function scope for the KEB automation platform (cam discs, electronic gears, angle synchronization).

BASIC Basic function scope for the KEB automation platform (IEC 61131-3 Standard and KEB Basic libraries).

ADVANCED Advanced function scope for the KEB automation platform (CNC functionality, G-Code, prepared movements).
CONTROL RUNTIME

BASIC FUNCTIONALITY

The entry-level product for the KEB range of control systems is CONTROL Runtime Basic. Even at the basic level, the real-time program core guarantees the deterministic behaviour with a jitter in the μs range. This clears the way for true multitasking without program-induced restrictions.

Deterministic communication channels such as EtherCAT® or CANopen today offer the possibility of using decentralised drive hardware simultaneously as remote I/O points. Also, digital cam switchgear can be achieved via the incremental encoder positions, without additional hardware.

KEB’s basic solution is generally suitable for movement controllers in which the tasks are divided over controller and drives.

HIGHLIGHTS

- Editors, functions and libraries are already fully available, right from the basic version
- Function modules for movement and control of drives shorten the engineering
- Standard equipment: versatile communication facilities from control to field level
More comfort is provided by simple function block interfaces with which the desired movements of the KEB drives can be programmed more easily. Both movements and administrative tasks can be operated with one module. These program function blocks can be executed in cyclic or acyclic communication mode, since the motion profiles are produced within the KEB drives. Because of the continuity within the KEB engineering software, the axis data is available throughout a project.

- Point-to-point positioning
- Rotation speed control
- Rotation speed and torque control in encoderless operation with ASCL (*) and SCL (**)
- Motor control with feedback

** KEB-specific drive functions for regulated operation of three-phase motors without encoder feedback.

** KEB-specific drive functions for regulated operation of PM motors without encoder feedback.
BASIC FUNCTIONALITY

Libraries, communication drivers and all fundamental features of COMBIVIS studio 6 are already available in the BASIC level. Because communication with other systems is still one of the decisive topics in automation, the KEB control system is designed to be open and flexible in all directions from Ethernet communication to the established fieldbus.

KEB supports users in programming with tools and prepared function modules - for basic functions in the same way as for sophisticated applications.

KEB CONTROL TECHNOLOGY SPEAKS DIRECTLY TO THE FOLLOWING FIELDBUS PROTOCOLS:

- Complex PID regulators,
- Ramp generators
- Drive functions
- FTP and web servers
- Temperature regulators
- File handling

EtherCAT®
CANopen
POWERLINK
EtherNet/IP®
INTERBUS
PROFIBUS
KEB-HSP 5 / DIN 66019-II
MODBUS
PROFINET®
As an extended solution, CONTROL Runtime PRO is also based on the programming standards IEC 61131-3 and PLC Open. The controllers and their interfaces to the drive regulators work with open, manufacturer-independent commands which correspond to the definitions of the PLC Open user organisation. The result is maximum flexibility in the choice of devices and code portability even if different manufacturer platforms are used on the controller side.

In the PRO solutions, the system transfers the movement profiles of all axes via the deterministic communication bus. In this way the number of possible profiles is unlimited and the profile itself can be changed in one movement cycle with a short reaction time. KEB offers an efficient solution for current and future machine developments.

HIGHLIGHTS

- Motion control in real-time
- Adaptation of the movement task on the fly
- Simple conversion into application units
- Axis control libraries create order
Beyond the basic level, CONTROL Runtime PRO offers additional libraries and graphic tools for the implementation of complex mechanical movement functions. What the tools produce is managed within the PLC program. So the setup of a machine can be changed very easily on a product change by recipe management.

Consequently, the time required for unproductive changeover is reduced. Another detail of the PRO Version: with the Abstract Drive Interface, KEB provides technology which can control various hardware types (drives, axes, hydraulics) in a project in one and the same way.
In automation, libraries serve the purpose of storing content so that it can be used again in a similar way for other projects, with very little to zero adaptation cost. The library areas of COMBIVIS studio 6 are therefore designed so that drives can be integrated more quickly or movement profiles programmed more efficiently.

The KEB Axis Utility library thus constitutes a proven means for greatly reducing project development time. The axis control solutions range from simple speed or positioning modes to complex synchronised movement tasks, such as cam discs, electronic gears or angle synchronisation.

Thanks to the combination of languages of IEC 61131-3 and integrated input aids, programmers can simply add an axis, select the movement behaviour and monitor the axis status – all with one function block.

KEB_SingleAxisControl
- InverterEnable
- AxisState
- Reset
- RequestedAxisMode
- AxisMode
- ActualAxisMode
- Start
- HomeDone
- Position
- Powered
- Velocity
- Done
- Direction
- Active
- Acceleration
- Slipped
- Deceleration
- InverterError
- Axis
- InverterErrorID
- FEBError
- FEBErrorID
- ActPosition
- ActVelocity

KEB_GearAxisControl
- InverterEnable
- AxisState
- Reset
- RequestedAxisMode
- AxisMode
- ActualAxisMode
- Start
- HomeDone
- Position
- Powered
- Velocity
- Done
- Direction
- Active
- Acceleration
- Slipped
- Deceleration
- InverterError
- RatioNumerator
- InverterErrorID
- RatioDenominator
- #Error
- Encoder
- FEBErrorID
- Axis
- ActPosition
- ActVelocity

KEB_PhasingAxisControl
- InverterEnable
- AxisState
- Reset
- RequestedAxisMode
- AxisMode
- ActualAxisMode
- Start
- HomeDone
- Position
- Powered
- Velocity
- Done
- Direction
- Active
- Acceleration
- Slipped
- Deceleration
- InverterError
- PhasenIdx
- InverterErrorID
- Phase
- FEBError
- Axis
- FEBErrorID
- ActPosition
- ActVelocity
CAM EDITOR

The graphic editor of COMBIVIS studio 6 gives users a powerful tool with which they can produce and digitally manage cam profiles. System developers appreciate the layout options most. These extend from linear or spline interpolators to loss compensation for cam switchgear.

Cam profiles are stored in table form and can be changed in real-time via the IEC function blocks. So developers can store many cam profiles directly in the control system for retrieval at any time.
CONTROL RUNTIME

ADVANCED FUNCTIONALITY

If CNC functions are required in an application, CONTROL Runtime ADVANCED is used. This extension to the PRO solution contains CNC transformation libraries and the CNC language interpreter to DIN 66025 (G-code).

The CNC library contains function blocks in order to use internally stored NC files for the project, or load external NC files (ASCII/.txt files). The combination of KEB control and ADVANCED functionality allows more complex tasks to be processed, with over 30,000 ISO code process lines, while simultaneously retaining the standard SPS flexibility. Predefined graphics templates also allow the simulation of movements and entire applications.

In general, CONTROL Runtime ADVANCED has no fixed performance limits. The limiting parameters therefore are only the computing performance of the control system and the transmission speed of the bus system.

HIGHLIGHTS

- CNC G-code to DIN66025
- Higher function scope with low programming complexity
- Numerous movement, safety functions and transformations included
Powerful CNC coordinate transformations: The CNC program is translated into the true mechanical configuration in real-time for all points of the three-dimensional Cartesian axes. For companies who want to integrate their own robot movement in the machine project, we recommend the CNC Transformer library.

The advantage of seamless integration is the absence of a separate communication connection between robot control and IPC - which ultimately improves the machine performance and synchronization.

With CONTROL Runtime ADVANCED, the motion behind a movement are less relevant for writing the CNC program. Users can therefore concentrate more on developing the best overall mechanical and electronic solution for their application. The KEB solution supports the following movement:

- Five-axis transformation
- Two- and three-dimensional gantry systems with functions for cutting, tool correction and stationary axes
- Scara systems with two and three arms
- Parallel systems as bipod and tripod with vertical or rotary axes
- Robot movement with four and six axes

The five-axis transformation allows control of a kinematic consisting of the following elements: three linear XYZ spatial axes for positioning a tool head freely in space, and two further axes for rotating and tilting the tool head.

Transformation of an articulated arm robot with six rotary axes and degrees of freedom (DoF). The three orientation axes of the robot arm intersect at a single point, the wrist centre point.
INPUT OF EXTERNAL DATA

and files (TXT and DXF)

SAFETY FUNCTIONS

to prevent external faults

CNC EDITOR

With the CNC Editor to DIN 66025, COMBIVIS studio 6 offers a 3D-motion tool. With this, users can use movement profiles with trusted G-code workpiece files, and also TXT, DXF and CAD files for controlling movement profiles. The KEB software tool can treat the G-code path as part of the compiled code, or process a buffered external file which can in turn be edited in real time - a great advantage in longer processes.

Programming aids consist of a number of assistants for avoiding loops, for calculation of round or smooth paths, working with polynomials of the 3rd or 5th order, rotation speed limitation, 3D scaling, rotation and splitting.

The engineering approach of KEB makes the implementation of CNC tasks as simple as possible while retaining high flexibility because the individual modules can easily be exchanged.
INTERPOLATION and profile generator

MOVEMENTS in large numbers

DRIVE CONTROL

Drive position reference

SAFETY FUNCTIONS to prevent external faults
SIMPLIFIED CONFIGURATION OF ROBOT APPLICATIONS

KEB CONTROL Runtime ADVANCED enables the user to conveniently configure complex robot axis groups with an integrated editor. The user can select the desired kinematics, parameterize and connect with the physical robot axes. The robot function is processed with standardized function blocks according to PLCopen MotionControl Part 4.

With CNC the exact observance of the path with the given speed is in the foreground. It is assumed that the machine can follow these guidelines, so that the resulting speeds, accelerations and moments are tolerated by the machine.

For point-to-point (PTP) movements, path adherence is secondary. The movements in the axis space are defined by waypoints; between these points the movement is interpolated. The speed and acceleration limits of the axes are taken into account.

For continuous path movements (CP), the kinematics follows a programmed path. In contrast to the CNC, the speed, acceleration and jerk limits of the axes are taken into account. Under these conditions, the path is traversed as soon as possible.

For PTP movements, the calculation of the movement takes only one cycle, so that movements can be planned or changed immediately. The calculation of CP movements is more complex and usually requires more than one cycle.

DYNAMIC TRACKING

The built-in tracking function allows movements to be programmed relative to a moving product coordinate system. The tracking ensures that the movement of the product is automatically superimposed with the movement relative to the product. In simple cases, the product is on a conveyor belt or rotary table and moves with it. But it is also possible that the product is moved by a second robot.
CONVENIENT PARAMETERIZATION OF AXIS GROUPS FOR PREDEFINED KINEMATICS IN A SEPARATE EDITOR

- Integrated motion planning with coordinate values for robot positions in different coordinate systems
- Function library with program blocks according to PLCopen Motion Part 4, such as: Eg. MC_GroupEnable / Disable / Reset / ReadError, MC_MoveDirectAbsolute, MC_MoveDirectRelative, MC_GroupHalt, MC_GroupStop, MC_TrackConveyorBelt or MC_TrackRotaryTable
- Many supported kinematics with comfortable configuration, eg. Various portal robots (2/3/5 axes), bipod / tripod robots, scara robots
- Additional tool kinematics
COMBIVIS studio HMI

The design tool allows for the effective production of graphic user interfaces and status monitoring systems for industrial plants. A special feature is the universal nature and portability of produced projects, which thanks to the integrated driver database can be linked to all conventional control systems and scaled to any desired display size. The user benefits from extensive template libraries and a highly developed toolbox, and can include standard elements such as alarm handling, recipe management and database registration without programming knowledge.

VISUALISE AND OPERATE

HMI Is the basis for visualisation and operation tasks. This symbol is placed by the available hardware.

BASIC Grundlegender Funktionsumfang für die KEB HMI.

PRO Professional function scope for KEB HMI (extended real-time database, data logger).

Advanced Advanced function scope for KEB HMI (webserver, multidrivers, SMS, email).
COMBIVIS studio HMI

PROJECT NAVIGATOR
for easy access to project resources.

CONTROL PANEL
contextual to the resource selected

REFACTORING EXPLORER
tool for automatic error correction

SCRIPT EDITOR
for compiling VBA, VB.NET and IL scripts and fault searching

OUTPUT WINDOW
for tracing all actions performed during development and run time

Created for development of user interfaces, applications for monitoring and data acquisition. With the Windows-based visualisation tool COMBIVIS studio HMI, complete machines can be visualised within the KEB COMBIVIS studio 6 programming environment. The software can also be used as an independent tool for programming human machine interfaces.

The basic technology of XML ensures performance and flexibility on an open platform. The human machine interface can therefore be managed easily with production data and statistical analysis by means of XML. Scalability and flexibility come standard with COMBIVIS studio HMI. HMI solutions, once produced, can therefore be used on various KEB hardware devices - irrespective of whether they are based on Win CE or Win 32/64 operating systems.

There is no need for the complex reprogramming of screen masks when the hardware is updated in the background.

KEB has designed COMBIVIS studio HMI as an interpreting system. Since there is no compiling, once project objects have been produced they can be reused by simple cut and paste. Because of the KEB philosophy of using open standards, COMBIVIS studio HMI is also ideal for integration and data exchange with PPL and ERP systems, both locally and in remote operation.

The technologies supported by COMBIVIS studio HMI include: Web services, SVG Graphics, OPC, SQL, ODBC, .Net and Java-Machine for Web-Client solutions.
TOOLBARS AND SYSTEM INFORMATION
freely configurable and adjustable.

PROPERTY
for simple and intuitive object configurations and explorer resources.

GRAPHICS EDITOR
and synoptic functions for production and visualisation.

TOOLBOX
object library, graphic symbols and templates

HIGHLIGHTS
• Open communications driver database
• Automated variable exchange
• Parallel development of HMI and controller projects
• Extensive template library
• High-level archiving possibilities
VISUALISATION CONCEPT

Within the KEB world of drive and automation, there are no borders between device technology and software. Consequently, solutions for visualisation, movement control and also remote maintenance can be used platform-independently on all KEB devices which have Win CE or Win 32/64 operating systems. So the choice of hardware suitable for an application is merely a question of the assigned task. Users therefore have a free choice of the form of automation:

- an integrative approach with just one device, remote panel solution or a decentralized arrangement of core components on different products.
- Finally, it is the required performance which determines the best path, and not the restrictions of individual products – which is why at KEB, all devices available in the network can be linked together with just one connecting cable.

HIGHLIGHTS

- No borders between hardware and software
- Many drivers ensure communication at all levels
- Connectivity inside and outside the KEB automation world
DRIVERS HARDWARE INTERFACES

<table>
<thead>
<tr>
<th>COMBIVIS studio HMI Version 5.0. 1183.xx</th>
<th>Serial</th>
<th>Ethernet</th>
<th>ADD-ON</th>
<th>WIN CE</th>
<th>WIN 32/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEB - PLC HANDLER (Elau, Parker...)</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x 1)</td>
<td>x</td>
</tr>
<tr>
<td>KEB - DIN66019II</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B&R PVI with protocol INA 2000 2)</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>B&R TCP 3)</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>BACNET IP 4)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>BeckhoffTwincat (ADS protocol) 5)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>KNX (EIBUS Konnex)</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>ELAP</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>FATEK</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>GE FANUC SNP-X</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>GE FANUC SRTP2</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hilscher NETLINK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Hilscher NETX MPI</td>
<td>x</td>
<td></td>
<td>NETCoreX MPI</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Hilscher NETX PROFIBUS Slave</td>
<td>x</td>
<td></td>
<td>NETCoreX PROFIBUS SLAVE</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Hitachi PLC serie H</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LENZE LECOM AB</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>LonWorks</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mitsubishi MELSEC A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mitsubishi MELSEC FX</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Mitsubishi MELSEC Q</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Mitsubishi FX3U TCP</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Modbus RTU Master / Slave</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Modbus TCP IP, Modbus TCP Server</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Moeller SUKOM</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>OMRON ETHERNET IP</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>OMRON FINS</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>OMRON Host Link</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>PANASONIC FP MEWTOCOL</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>ROBOX</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Rockwell DF1 and Data Highway</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Rockwell Ethernet IP, Rockwell Ethernet IP 1800</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>SAIA via SCOMM DLL</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SAIA S-BUS</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>SCHNEIDER UNITELWAY SLAVE</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Shared Memory</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SIEMENS MPI PC ADAPTER</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SIEMENS S5 CPU, SIEMENS S5 DK3864R</td>
<td>x</td>
<td></td>
<td>RS232 to current loop convert</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SIEMENS S7 200 PPI</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SIEMENS S7 300/400 MPI</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>SIEMENS S7 CP 300/400/1200 6)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>SIEMENS SAPI S7</td>
<td>x</td>
<td></td>
<td>SIEMENS CPS61, 5613, 5614, 5412, SIMATIC NET</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SIEMENS TIA</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>SIEMENS SIMOTION</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

1) requires CoDeSys Gateway running on controller side, 2) requires an additional PLC communication library (license), 3) requires a FB into the B&R PLC without Libraries, 4) driver for building automation, 5) requires Beckhoff library (free of charge), 6) communication with S7-1200 controllers is supported only with absolute addressing (no symbolic addressing), 7) supports the variable import from TIA portal and the communication to S7-1200/1500 with absolute and symbolic addressing.
HIGHLIGHTS

- Project scalability independent of screen size
- Multitouch and gesture control
- Support for vector graphics and media functions such as videos, Office files, PDF
- Large library with elements, graphics and functional template

GRAPHIC FUNCTIONS

The products and tools for KEB visualisation solutions are designed to meet even sophisticated demands in terms of speed and quality of graphics. Because project scalability is an absolute must in modern programming of visualisation solutions, graphic projects which are produced in COMBIVIS studio HMI can later be displayed on different size HMIs. The projects produced with COMBIVIS studio HMI are platform-independent because they use an “interpreted language” which avoids special hardware compiling.

COMBIVIS studio HMI supports high-quality graphics in a simple way and automatically scales the objects to the size of the display. The use of vector graphics facilitates work with files of type bmp, gif, wmf and emf.

To ensure less distance between the Office world and industrial automation, all KEB products support the Media function. Files with extensions .doc, .xls, .ppt and .pdf can be opened directly from the visualisation pages without needing to shut down the program.
COMBIVIS studio HMI offers a wide range of graphic objects such as buttons, switches, meters or similar visualisation elements. Each object has a large number of predefined properties and actions which can easily be adapted.

Power Templates are used to configure projects automatically. Here the user simply inserts symbols and screen masks. This can be done after producing predefined templates with special dynamic animations and VBA scripting functions. The export function means that these objects can be used with conventional Windows tools. Multi-monitor functions also create the basis of assigning a specific screen mask to monitors and creating a link for which page should be displayed on which monitor.
The Multi-touch feature is supported by COMBIVIS studio HMI starting from the COMBIVIS studio HMI 5 version.

The multi-touch is formatted in two parts, the hardware (a touch screen which recognizes multitouching simultaneously) and the operating system which recognizes points being touched and interprets them. When the software senses more than one touch gesture at the same time on the screen, it provides user interaction with project functions with intuitive gestures based on those frequently used in modern mobile devices such as tablet and smartphone to improve HMI systems use experience. In addition, COMBIVIS studio HMI supports the Multi-touch feature for multipoint tapping whereby two command objects can be tapped contemporarily which is handy for systems that need to ensure safety where both the user’s hands must be present on the screen at startup or when activating particular commands.

<table>
<thead>
<tr>
<th>Gesture</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinch open</td>
<td>Zoom-Out the screen (Pinch&Zoom)</td>
</tr>
<tr>
<td>Pinch Close</td>
<td>Zoom-In the screen (Pinch&Zoom)</td>
</tr>
<tr>
<td>Pan</td>
<td>Move a previously zoomed area</td>
</tr>
<tr>
<td>Scroll</td>
<td>Vertical scroll for lists and tables</td>
</tr>
<tr>
<td>Flick</td>
<td>Scrolling the displayed area horizontally to view those parts that cannot be seen within the window or switching of the active Screen</td>
</tr>
<tr>
<td>Touching two different command Objects at the same time.</td>
<td>The system allows individual commands of the two objects to be executed at the same time upon being pressed</td>
</tr>
</tbody>
</table>
INTEGRATED DEVELOPMENT ENVIRONMENT

VARIABLES IMPORT

The KEB solution for visualisation and control was developed with an eye to flexibility. The COMBIVIS studio platform for automation and human machine interfaces offers the user the opportunity of importing the entire database of control variables. This reduces development time since all the user need do is combine the controller with the HMI. Independent variable databases can be produced in the HMI project.

The variable database is a direct part of the visualisation product, so an assistant is available which guides the user through the database import/export and handling. Everything necessary for the project is contained in the system. A wide range of system variables can be used in conjunction with the database for the PLC variables to make the customer’s work highly efficient, safe and stable.

Variable database

Depending on the number of variables required, the user can simply select the best HMI product. In KEB products, there are no restrictions for imported variables, just for the number of bytes in use (memory limit). Using the project navigator, the user can see the number of variables currently used and the peak usage value during project operation.

All variables displayed on the screen, and variables of data acquired and alarms monitored, are listed under “in use”. The programming environment automatically reports where the variables are used and, after double-clicking, jumps direct to the variable concerned.
In debug mode, a wide range of tools is available such as checking variable status, statistics, and script checking. The statistics tool helps the user check the number of variables used in the project and find the correct hardware to support the variables range and the desired performance.

The user may exceed these limits for two hours for fault search and test purposes, but shut down and restart are required.
Shared Memory: COMBIVIS studio HMI can export the variable database when using software from a third party supplier, which greatly simplifies the integration between existing hardware and software.

COMBIVIS studio HMI easily handles multilanguage projects using string tables. The tables can be exported into CSV format, sent for external translation and then reimported into the project. HMI multi-language supports all ASCII or Unicode UTF-16 standards.
Recipe management is a standard in machine operation. The operator can select the recipe on the basis of the product requirements. If adaptations are required, the operator can save new settings under a new recipe. Each recipe contains a unique ID which prevents overwriting existing recipes. On the software side, there are no limits to the number of recipes; the memory on the motherboard is the only restricting factor.

Also with the KEB solution, recipes can be structured in a parent-child configuration so that general values can easily be passed on. Recipes can be saved manually or directly by extraction of historic data from a database. All this is achieved thanks to the commands and scripts of COMBIVIS studio HMI.

Screen masks for recipes can be produced manually or the integrated automatic assistant can be used. Each recipe contains a “Variable”, a “Description”, a “Value” and a “User unit”, and can be encrypted for security.

The datalogger is an equally powerful tool and serves for recording and managing of data for the purpose of further database analysis, whether ODBC (Open Database Connectivity) or IMDB (In Memory DB) is used. The data may be stored as simple text, as XML files or in encrypted form.

For devices based on Windows CE, the use of IMDB avoids converting ODBC connections into ADOCE, and makes the installation of ADOCE and SQL Server CE components superfluous. The result is a lower system load from the Windows CE device and an improvement in performance.
The data can be monitored using the raster object provided for this, which includes many functions such as an analysis filter. Variables can be sampled on a time basis, by command or by triggering. For WIN 32/64 operating systems, the standard ODBC interface to the Microsoft database can be set up locally or in remote mode.

For WIN CE, only local mode is supported. The list of ODBC types supported by KEB products includes the following: MS Access, MS SQL Server 2000, 2005, 2005 Express, 2008, 2008 Express, MySQL 5.1, and Oracle Express.

COMBIVIS studio HMI offers a power alarm management. The main task of the runtime is to generate an alarm in relation to a variable threshold value or a logic variable.

The COMBIVIS studio HMI alarm management is fully configurable and can meet the needs of every application. Project alarms are combined into groups which are in turn grouped into threshold values. The alarm activation can be triggered by a fixed or a variable threshold value. Acknowledgement and reset of each alarm are programmable.

Special priority levels can be assigned to each alarm so that the user can rapidly assess the situation. The alarms can also be grouped into areas for filtering the alarm displays.

Statistical calculations such as the frequency and duration of the alarms, and the reporting methods such as SMS, email, print spooling and scroll lock, are also integrated in COMBIVIS studio HMI.

HIGHLIGHTS

- Existing recipe management with many possibilities for individualisation
- Datalogger and historic data are standard
- Wide support of different databases
- Continuous error management
The Trend tool is a powerful observation tool for data recorded with the datalogger, and also a standard format CSV recorder. Thanks to the “Keep-in-Memory” function, recording is active even when the object is not displayed. The trend function was developed to offer maximum flexibility in the graphic display of recorded data.

The trend function of COMBIVIS studio HMI allows the user to view and monitor selected variables in a graphic format, and is the most effective way of saving, printing and analysing variables such as temperature, pressure, fill level, weighing cell and chemical measurement values.

The graphs can be displayed as follows: historically, in real-time, time-based or as X-Y diagrams.

When the trend function is started, the sampling and display settings selected for the user are loaded. The data buffer can be expanded up to 10,000 sampling values. When the trend function is stopped, the buffer contents are displayed. In the background however the trend function continues to sample and buffer values.

COMBIVIS studio HMI also has an audit trail tool for recording changes in specific variables together with the change cause in a database or text file. This provides a simple form of monitoring particular machine settings for changes over time, and the associated causes. This function is also used in connection with FDA standard 21 CFR Part 11.
The KEB product range offers the user a high standard of safety. On the basis of the general properties of the user or user groups, it is possible to define how project safety should be managed. For example, password protection can be activated for editing/changing a project. Other passwords (user log on/log off) are possible in machine operation.

As soon as a user level is set to a particular value, only users of this or a higher level may make changes. All settings are stored in a file which can be saved in the runtime folder or externally after defining the network path for client-server projects.

The project can also be protected by a password which is required every time when programming or on start of runtime. Up to 1024 levels can be set. Activation of password management also requires password inputs for the runtime functions.

Many pharmaceutical companies are inclined to use the benefits resulting from the use of electronic records. The load from paper documentation which must be stored for many years is in itself a motivating factor.

In addition, the use of electronic records can substantially reduce the time for acquisition and checking of the necessary documents before medication is released to the market.

With the safety and access restrictions available, electronic records are protected from accidental loss, theft or falsification. This function is also used in connection with FDA standard 21 CFR Part 11.
PROJECT MANAGEMENT & CONNECTIVITY

COMBIVIS studio HMI offers a powerful and innovative function which allows you to meet new challenges in the development of monitoring systems.

Using the KEB tool, you can structure a project by centralising resources to other projects (“children”) with dynamic relationships, which creates the possibility of dividing the development tasks. A “child project” is a normal COMBIVIS studio HMI project which can work independently but is coupled to the “parent project” in a “parent-child” configuration. The parent project has all its own project resources plus the project resources of the child project.

To take this concept further, a parent project may contain several child projects, and a child project could itself contain one or more child projects and hence itself be a parent project. The overall result is a cascade project structure which is perfect for companies with divided software development and/or modular machine construction tasks.

OPC and OPC UA technology (OPC UA (Open Platform Communications Unified Architecture)) is a logical addition to COMBIVIS studio HMI’s extensive communication driver database. In the application, a very flexible networking is possible, which can access both proven, proprietary services, as well as forward-looking standards.

The COMBIVIS studio HMI OPC UA integration sets new standards “ready-for-Industry 4.0”

Easy to use: Available servers are automatically detected or added easily via the network address. On the server the user can navigate directly to required variables and import them.

Easy Integration and Backward Compatibility: Existing projects can be augmented or renewed without touching the visual user front end. Communication drivers are easily exchanged or extended in the background.
Redundancy and reliability: Simple configuration of backup servers and constant monitoring of communication via heartbeat mechanisms ensure reliability and high availability of important operating data.

The divided process control architecture increasingly calls for solutions for handling connected multiple cells and workstations, control-only or display-only stations, and multiple PCs.

The most logical solution is to interconnect these devices via an Ethernet connection. Since this offers high performance and low cost, the Ethernet connection is now by far the most common physical level. KEB’s networking function uses the efficiency of the protocols which can run on Ethernet connections to connect COMBIVIS studio HMI stations together in client/server mode.

COMBIVIS studio HMI fulfills the requirements for connectivity and networking using the performance of TCP/IP, UDP and HTTP protocols which are already standard and used daily in Ethernet connections. These have proven to be as popular as they are fast. With a few simple mouse clicks, two or more KEB stations can be connected together in a network. The variables in use are then exchanged between client and server.

KEB products were developed for good connectivity. In this connection, there is more than one possible way of reaching devices around the world. With KEB’s HMI solutions, via a browser supporting Java Machine, a user can reach any device based on Windows CE or Windows 32/64 — with or without password protection.

Two users can be connected simultaneously. When accessing a browser on a device, a remote instance is formed which is different from the local display and thus allows the remote user free access to all screens without adversely affecting the screen of the local user.

For situations in which remote access to machines over the internet is not permitted, KEB offers the remote access tool COMBIVIS connect. COMBIVIS connect works independently of firewalls and creates an industrial VPN (virtual private network) for complete device access.
SCRIPT AND SCHEDULER

The performance of the KEB solution is also measured via its scripting functionality. For the most demanding customers looking for functions which are not available as standard in our development environment, the powerful VBA (Visual Basic Application) script language provides a custom solution. This function is available for both Windows CE and Windows 32/64 platforms. Win 32/64 platforms also support developments in VB.NET.

A scheduler tool is provided for products which call for commands to be executed at predefined times or at preset intervals. The scheduler is then responsible for executing a command or command list based on the system time of the PC. This function can drastically reduce machine development time and offers users advantages in performance. Thus for example, a machine can begin warming up before the workforce appears, or a machine can start a maintenance cycle every week.

HIGHLIGHTS

• The open system means that all possible functions/expansions can be produced using Visual Basic Application
• Scheduler tool for time- or event-dependent tasks
FUNCTIONS

<table>
<thead>
<tr>
<th>Category</th>
<th>WINCE</th>
<th>WINCE</th>
<th>WIN32</th>
<th>WIN32</th>
<th>WIN32</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BASIC</td>
<td>ADVANCED</td>
<td>BASIC</td>
<td>PRO</td>
<td>ADVANCED</td>
</tr>
<tr>
<td>REAL-TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-time DB (max.)</td>
<td>1024 Byte</td>
<td>8192 Byte</td>
<td>2048 Byte</td>
<td>2048 Byte</td>
<td>4096 Byte</td>
</tr>
<tr>
<td>ODBC real-time</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Trace DB</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Object events</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>GRAPHIC INTERFACE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public symbols / Power Templates (VBA symbols)</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Support of BMP, GIF, JPG, WMF, EMF</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Raster functionality</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Dundas display instruments</td>
<td>–</td>
<td>–</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Alias management in objects</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Multi-Touch, gesture control</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Objects via Drag and Drop</td>
<td>–</td>
<td>–</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Window IP camera</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>ALARME AND ARCHIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic management (CSV)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Historic management (ODBC)</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Alarm transmission (SMS, email, voice)</td>
<td>–</td>
<td>x</td>
<td>–</td>
<td>–</td>
<td>x</td>
</tr>
<tr>
<td>SMS via SMPP protocol</td>
<td>–</td>
<td>x</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alarm management</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipe / Data Logger (XML)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Recipe / Data Logger (ODBC)</td>
<td>max. 2</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>TRENDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-time trend / historic trends (CSV file/Datalogger XML)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Historic trends database (ODBC)</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Data analysis</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>USER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User group management 1024 levels / run-time users</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Dynamic multi language</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CFR21</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>DRIVERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. number of drivers</td>
<td>max. 2</td>
<td>max. 4</td>
<td>max. 2</td>
<td>max. 2</td>
<td>max. 4</td>
</tr>
<tr>
<td>Event objects, time management</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>PLC Tag Importer</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>OPC Client XML DA</td>
<td>–</td>
<td>–</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>OPC Client UA, OPC Client DA</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>LOGIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL Logic (Step5-Step7)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>VBA Logic (WinWrap Basic)</td>
<td>x</td>
<td>x</td>
<td>max. 2 scripte</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>VBA interface communication drivers</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>VARIOUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subprojects</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Process image navigation</td>
<td>x</td>
<td>x</td>
<td>–</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Web client</td>
<td>–</td>
<td>max. 4 clients</td>
<td>–</td>
<td>–</td>
<td>max. 2 clients</td>
</tr>
<tr>
<td>COMBIVIS HMI mobile</td>
<td>–</td>
<td>x</td>
<td>–</td>
<td>–</td>
<td>x</td>
</tr>
</tbody>
</table>
COMBIVIS HMI mobile

The COMBIVIS HMI mobile app allows the user to operate machine visualisation via mobile devices such as tablets or smartphones connected via Wi-Fi. On start-up, fault search, setup or in normal operation, this functionality offers great added value for everyday work.

This tool offers new potential for plant management. COMBIVIS HMI mobile can be downloaded free via App Store or Google Play and requires “ADVANCED” functionality on the visualisation devices.

BETTER PRODUCTION MONITORING
COMBIVIS HMI Mobile allows continuous monitoring and more efficient and flexible control of machines. Direct diagnosis and operation of the plant are independent of the fixed installed position of the HMI.

INDEPENDENT INSTANCE
Thanks to the software setup of COMBIVIS HMI for connection of Web interfaces, project management on COMBIVIS HMI Mobile is independent of local users. Thus the HMI of the machine can be operated normally at the same time.

COMBIVIS HMI Mobile also allows selection of the display resolution of the iOS/Android devices independently of the resolution of the machine terminal, offering full comfort on mobile devices.

SAFETY AND USER MANAGEMENT
COMBIVIS HMI Mobile uses the user management and safety of the HMI project concerned, and controls log-on and access to pages and functions. When these safety functions are used, COMBIVIS HMI mobile can only access the machine with the help of the access data.
COMBIVIS CONNECT FUNCTIONALITY

The rapid and secure remote maintenance platform ensures optimum service conditions in a modern automation system. Via safe end-to-end connections, the centrally managed devices are quickly available without local presence - at any time and anywhere in the world. Furthermore, regular data recording ensures transparent depiction of machine data and allows the best possible analysis and continuous improvement process.

INNOVATIVE SOFTWARE FOR OPEN REMOTE MAINTENANCE TECHNOLOGY

CONNECT is the basis for professional remote maintenance. This symbol is placed by the available hardware.
COMBIVIS CONNECT

REMOTE MAINTENANCE SOFTWARE WITH A FUTURE

COMBIVIS connect is the future-oriented remote maintenance solution from KEB for the Win32 and Win CE operating systems. It allows automation of machines and plant to be monitored and controlled remotely.

HIGHLIGHTS

- Remote management of KEB device series on which COMBIVIS connect is installed.
- Programming, fault search and update of projects working on remote devices in the same subnetwork.
- Creates a VPN connection between an operator PC and the remote device by activation of the subnetwork access.
- Activates safety processes with end-to-end sessions without intermediary.
- Redundant and distributed server architecture guarantees reliability and transmission stability.
This tool is designed to carry out remote maintenance as simply as possible without great expense, to access domains, manage users and their rights, and register devices. The COMBIVIS connect Control Center is simply installed on the corresponding PCs of the colleagues concerned.

Runtime contains the installed and executing components on the remote C6 devices. This is what monitors and controls the automatic process and makes the end-to-end VPN connection possible.

Communication between the Control Center and Runtime is reliably created and managed by the redundant server infrastructure. The latest safety standards guarantee maximum data protection.

COMBIVIS connect Domain virtually reproduces the customer account in order to be able to use all services and own infrastructures of the KEB remote maintenance solution.
COMBIVIS CONNECT

COMBIVIS CONNECT SERVER INFRASTRUCTURE

A redundantly structured, worldwide distributed server infrastructure guarantees access to remote devices at all times. The system is built so strongly that there are no limits in relation to number of users and devices for customers within their own domain.

CLOUD-BASED ACCESS

KEB stores COMBIVIS connect Domain in structured fashion in a cloud. This architecture at the same time ensures maximum data security and continuity of service. Colleagues can start the Control Center independently of their current location, and access remote machines. The cloud does not store any project data but with background execution programs deals rather with the registration and management of devices, users, user groups and authorisation profiles.

SAFELY PROTECTED VPN

COMBIVIS connect works at the level of the data link layer. This technology brings firm benefits in comparison with VPN-based network layers.

- Because after logging in, the Control Center PC becomes a true member of the remote host network, it is also assigned an IP address from the same physical IP address range.
- For remote operation, users can use broadcast-based protocols.
- Device access requires no additional gateway configuration.
CERTIFIED SECURITY

With COMBIVIS connect, data protection and data security come first. To underline this, the COMBIVIS connect Access Servers, the C6 Routers, the Control Center, as well as all Runtimes as of version 8 have been certified according to the international standard IEC 62443- for Industrial Communication Networks and IT Security for Networks and Systems. This allows among other things the configuration of a secure password assignment.

HIGHLIGHTS

- Network and firewall of the end user need not be configured
- COMBIVIS connect automatically uses released TCP and UDP protocols and can use HTTP, HTTPS or user-defined ports
- Compatibility with existing IT security guidelines is guaranteed

COMPATIBILITY WITH EXISTING FIREWALLS

COMBIVIS connect Control Center and COMBIVIS connect Runtime connections are configured as outgoing connections which are acknowledged as secure and therefore acceptable according to firewall guidelines.
INTEGRATED COMBIVIS CONNECT FIREWALL

The firewall integrated in COMBIVIS connect controls the communication packets which are sent by the VPN. It is possible to filter Ethernet data packets depending on communication protocols and destination addresses. The filter rules can be assigned to individual users or user groups, and the server infrastructure provides a library of ready-made guidelines. This leads to greater safety and bandwidth control, and increased flexibility in the field of access rights.

MULTICLIENT

COMBIVIS connect Runtime allows simultaneous access to a remote system with several connections.

HIGHLIGHTS

- The Control Center can activate interactive sessions with different devices and just one VPN connection via a remote device.
- The overall advantage: because more users can work simultaneously on a remote maintenance project, productivity is increased.
ALWAYS UP TO DATE

The new update function makes it possible to easily update the runtime of the devices by remote maintenance. This saves a time-consuming and expensive service call. Existing device groups can benefit directly from updated security features.

The system administrator has full control over all software updates. Device, update type and time can be planned individually. Thus, already at work time relevant update can be pre-activated. The update itself can be scheduled for instance during a production break at the weekend.
ACCESS ACTIVITY STATISTICS

COMBIVIS connect records and saves all remote access activities at the respective domain.

Network administrators have a full overview of who has worked for how long on a project. The resulting record of time spent can be used for example for later invoicing of an after-sales service.

The accurate combination of orders performed, specifying operator, remote PC and connection time, gives a transparent proof of activity for the end customer.

MANAGEMENT OF ACCESS RIGHTS

With COMBIVIS connect, an unlimited number of users, user groups and devices can be defined each with different access rules. Authorisations can be configured flexibly from folder level to the individual device.

- Directory and user management by administrator
- Device installer for inclusion of new devices in the domain
- Network security for configuration of own firewall rules
- Remote access as a basis for remote sessions

The benefits:

- Users can produce and manage their own organisation structure
- Flexible and controlled possibility of reaching all customers worldwide
- Only authorised personnel have secure and structured access to remote devices
SECURE VPN CONNECTION

COMBIVIS connect automatically installs a VPN adapter on the Control Center PC. The virtual Ethernet adapter works as a VPN client and receives an IP address from the existing VPN network from the remote device (VPN server). There is a direct end-to-end connection between the communication partners.

- The connection is securely protected from external access and manipulations, to all IP-based devices in the VPN network.
- Quick search for KEB devices via COMBIVIS 6

VIRTUAL SERIAL CONNECTION

COMBIVIS connect automatically installs a virtual serial adapter on the Control Center PC. The virtual serial port of the Control Center PC can be mapped to a physically present port of the remote device if COMBIVIS connect Runtime is installed. The serial connection mode provides the opportunity of serial communication via RS232, RS422, RS485 or MPI.

- Even remote serial devices can be monitored, diagnosed and adapted for new tasks.
- You can also search for individual KEB devices in a targeted fashion in COMBIVIS 6 in serial communication.

CHAT BETWEEN LOCAL AND REMOTE PC

To allow the exchange of important information quickly in a project, KEB has provided a chat function in the remote maintenance solution. This allows direct communication without separate telephone conferences, because the technician at the CONTROL Center is directly connected via the remote maintenance network to the remote engineer on site in on-line chat.

REMOTE DESKTOP FUNCTION

The Control Center software offers a remote function with which desktops of remote devices can be operated remotely, without additional services or support programs.
COMBIVIS CONNECT

DEVICE MANAGEMENT

C6 IPCs and C6 HMIs with COMBIVIS connect Runtime can be included in a domain using their ID and a password, and registered with their serial number. This excludes registration under further domains, which safely prevents access outside the domain. The unique access rules extend to device level.

FILE EXCHANGE WITH REMOTE DEVICES

Thanks to the Remote Explorer Control Center function, a complete tool is available for downloading and uploading of files. This brings the benefit that access to the directories of the VPN partner need no longer be granted separately. Additional applications such as FTP servers are also no longer required.

TARGETED REMOTE MAINTENANCE ACTIVITIES

- Monitoring and start-up of remote devices
- Access, fault search and programming of controls and automation devices
- Preventative and predictive maintenance
- Updates and changes of software applications on remote controllers
- Access to Ethernet and serial subnetworks
HIGHLIGHTS

- Certified security according to IEC 62443
- Direct file exchange between local PC and remote device
- Ethernet and/or serial connection between local PC and remote device via VPN
- Integrated COMBIVIS connect firewall for communication through VPN / full compatibility with existing firewalls
- Multi-client functionality supports several simultaneous connections of different observers
- Management of access rights for an unlimited number of users and devices
- Recording of access activities in statistics

SUPERIOR REMOTE MAINTENANCE FEATURES

Available for Win 32 and Win CE platform
No additional hardware required
Uses the existing Internet connection
Remote PCs need no further services (VNC, FTP server, etc.)
Simple and user-friendly interface, simple setup
SSL/TLS protocol, encryption and certificates
Safe and fast thanks to end-to-end VPN
Automatic connection to first free relay server with shortest waiting time
Multi-client Runtime

INNOVATIVE FUNCTION PROPERTIES

Remote desktop with multi monitor support
Remote explorer
Chat, screenshot, task manager, statistics
VPN to remote PC
VPN with access to the Ethernet subnetwork of remote devices
Virtual serial interface
Domain creation, hierarchical profiling of users and remote PCs
Automatic connection creation after restart of remote PC
Rights allocation for users and user groups
Assignment of firewall rules at folder and device levels

COMBIVIS CONNECT RUNTIME

Remote desktop (also multiple sessions with Windows Server),
file and task management, chat, screenshot
VPN to remote system
VPN with access to Ethernet of remote system
VPN with access to subnetwork of remote system serial interface
Integrated firewall
API for interface with in-house software applications
Permanent log Runtime operations
Multiple connection of different control centres
Creation of domain, structured organisation of users and remote PCs
Support for Internet connection via PROXY for Control Center and Runtime
Operation in local network without licence
Support for control of Runtime with automatic management of termination and restart of Runtime service
OVERVIEW

<table>
<thead>
<tr>
<th>Display</th>
<th>4.3"</th>
<th>5.7"</th>
<th>7"W</th>
<th>8.4"</th>
<th>10.1"W</th>
<th>10.4"</th>
<th>12.1"</th>
<th>12.1"W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>16:9</td>
<td>4:3</td>
<td>15:9</td>
<td>4:3</td>
<td>16:10</td>
<td>4:3</td>
<td>4:3</td>
<td>16:10</td>
</tr>
<tr>
<td>Resolution</td>
<td>480 x 272</td>
<td>640 x 480</td>
<td>800 x 480</td>
<td>800 x 600</td>
<td>1280 x 800</td>
<td>800 x 600</td>
<td>800 x 600</td>
<td>1280 x 800</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **C6 HMI**
 - 4.3"
 - 5.7"
 - 7"W

- **C6 HMI LC**
 - 4.3"
 - 7"W

- **C6 S14**
 - 4.3"
 - 7"W

- **C6 E22**
 - 4.3"
 - 7"W

- **C6 P34**
 - 4.3"
 - 7"W

- **C6 SMART**
 - 4.3"
 - 7"W

- **C6 MONITOR**
 - 4.3"
 - 7"W

- **C6 AMM**

- **C6 COMPACT**

- **C6 ROUTER**

CONTROL is the basis for PLC and motion control functionality.

- **Basic**
 - Basic function scope for the KEB automation platform
 - (IEC 61131-3 standard and KEB Basic libraries)

- **Pro**
 - Professional function scope for the KEB automation platform
 - (cam discs, electronic gears, angle synchronisation)

- **Advanced**
 - Advanced function scope for the KEB automation platform
 - (CNC functionality, G-Code, prepared movements)
HMI is the basis for visualisation and operation tasks.

Basic
- Basic function scope for KEB HMI
 - 4:3: 1024 x 768
 - 16:9: 1366 x 768

Pro
- Professional function scope for KEB HMI
 - (extended real-time database, data logger)
 - 4:3: 1280 x 1024
 - 16:9: 1366 x 768

Advanced
- Advanced function scope for KEB HMI
 - (webserver, multidrivers, sms, email)
 - 5:4: 1280 x 1024
 - 16:9: 1920 x 1080

CONNECT is the basis for professional remote maintenance.
An embedded system is a modular constructed and embedded control system, the computer architecture of which is based on a standard PC.

In this system, only components which are required for the corresponding application are integrated in the system. They are used where computing power and compatibility are required.

Ever more powerful processors allow the use of embedded systems to control complex machines and plants in real-time.

- C6 HMI
- C6 HMI LC
- C6 SMART
- C6 SAFETY PLC
- C6 COMPACT
- C6 ROUTER
- C6 S14
C6 HMI
HIGHLIGHTS

• High-quality visualisation system
• Open and communicative thanks to multiple interfaces and drivers for widely varying controllers, drives
• Integrated remote maintenance
• Intelligent Memory Management with large internal memory
PROTECTION CLASS IP66

ALUMINIUM FRAME

TOUCH SCREEN

16 MILLION COLOURS

4:3 AND 16:9 FORMATS

C6 HMI

C6 SMART

Ethernet

EtherCAT

S6 Servo Drive

PM Motor
TECHNICAL DATA

CPU

<table>
<thead>
<tr>
<th>Processor</th>
<th>ARM Cortex A8 - Freescale i.MX535, 1 GHz, 400 MHz Memory Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>System memory</td>
<td>RAM 1GB DDR3-800</td>
</tr>
<tr>
<td>Front panel</td>
<td>GPU with integrated LCD controller</td>
</tr>
</tbody>
</table>

MASS MEMORY

<table>
<thead>
<tr>
<th>NAND Flash</th>
<th>256 MB for operating system and runtime environments (internal, not removable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eMMC (Solid State Disk)</td>
<td>4 GB project memory for free use</td>
</tr>
</tbody>
</table>

OPERATING DATA

<table>
<thead>
<tr>
<th>Power supply</th>
<th>18 . . . 36V DC (isolated power supply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating environment</td>
<td>0 . . . 50°C, Rel. humidity 80% (without condensation)</td>
</tr>
<tr>
<td>Storage conditions</td>
<td>-20 . . . 60°C, Rel. humidity 80% (without condensation)</td>
</tr>
</tbody>
</table>

OPERATING SYSTEM

Windows Embedded Compact 7 Pro

APPROVALS

CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (UL508)

PANEL

<table>
<thead>
<tr>
<th>Display size</th>
<th>4.3"W</th>
<th>5.7"</th>
<th>7"W</th>
<th>8.4"</th>
<th>10.1"W</th>
<th>10.4"</th>
<th>12.1"</th>
<th>12.1"W</th>
<th>15"</th>
<th>15.6"W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>16:9</td>
<td>4:3</td>
<td>4:3</td>
<td>4:3</td>
<td>4:3</td>
<td>4:3</td>
<td>4:3</td>
<td>4:3</td>
<td>4:3</td>
<td>16:9</td>
</tr>
<tr>
<td>Resolution</td>
<td>480x272</td>
<td>640x480</td>
<td>800x600</td>
<td>800x600</td>
<td>1280x800</td>
<td>800x600</td>
<td>800x600</td>
<td>1280x800</td>
<td>1024x768</td>
<td>1366x768</td>
</tr>
<tr>
<td>Colours</td>
<td>16 M</td>
<td>256 K</td>
<td>16 M</td>
</tr>
<tr>
<td>Brightness</td>
<td>400 cd/m²</td>
<td>500 cd/m²</td>
<td>500 cd/m²</td>
<td>250 cd/m²</td>
<td>400 cd/m²</td>
<td>400 cd/m²</td>
<td>500 cd/m²</td>
<td>400 cd/m²</td>
<td>450 cd/m²</td>
<td>300 cd/m²</td>
</tr>
<tr>
<td>Touch technology</td>
<td>Resistive 4 wire</td>
<td>Resistive 5 wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection class</td>
<td>IP66 On front</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front panel</td>
<td>Aluminium. Polycarbonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C6 HMI

- NETWORK-ON LED
- USB 1 (TYP A 2.0)
- DC POWER SUPPLY
- USB 2 (TYP A 2.0)
- SD CARD SLOT
- RESET BUTTON
- LAN 1 (100 MBPS)
- COM 1 (RS232/422/485/MPI)
- LAN 2 (10/100 MBPS) (COMBIVIS CONNECT)
TECHNICAL DATA

PANEL SIZE

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3"</td>
<td>140</td>
<td>95</td>
<td>5</td>
<td>30</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>84</td>
<td>–</td>
<td>–</td>
<td>128</td>
<td>131</td>
<td>86</td>
</tr>
<tr>
<td>5.7"</td>
<td>175</td>
<td>145</td>
<td>5</td>
<td>40</td>
<td>–</td>
<td>7</td>
<td>–</td>
<td>131</td>
<td>–</td>
<td>–</td>
<td>161</td>
<td>164</td>
<td>134</td>
</tr>
<tr>
<td>7.0"W</td>
<td>215</td>
<td>155</td>
<td>5</td>
<td>40</td>
<td>–</td>
<td>7</td>
<td>–</td>
<td>141</td>
<td>–</td>
<td>–</td>
<td>201</td>
<td>204</td>
<td>144</td>
</tr>
<tr>
<td>8.4"</td>
<td>255</td>
<td>190</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>30</td>
<td>42</td>
<td>156</td>
<td>243</td>
<td>179</td>
</tr>
<tr>
<td>10.1"W</td>
<td>293</td>
<td>201.5</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>6.5</td>
<td>15</td>
<td>130</td>
<td>43.5</td>
<td>62</td>
<td>156</td>
<td>285</td>
<td>193.5</td>
</tr>
<tr>
<td>10.4"</td>
<td>295</td>
<td>230</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>70</td>
<td>62</td>
<td>156</td>
<td>283</td>
<td>219</td>
</tr>
<tr>
<td>12.1"</td>
<td>325</td>
<td>260</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>100</td>
<td>77</td>
<td>156</td>
<td>313</td>
<td>249</td>
</tr>
<tr>
<td>12.1"W</td>
<td>321</td>
<td>222.5</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>6.3</td>
<td>15</td>
<td>130</td>
<td>65</td>
<td>76</td>
<td>156</td>
<td>313</td>
<td>215</td>
</tr>
<tr>
<td>15.0"</td>
<td>390</td>
<td>305</td>
<td>6</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>145</td>
<td>109.5</td>
<td>156</td>
<td>378</td>
<td>294</td>
</tr>
<tr>
<td>15.6"W</td>
<td>420</td>
<td>265</td>
<td>6</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>105</td>
<td>124.5</td>
<td>156</td>
<td>410</td>
<td>255</td>
</tr>
</tbody>
</table>

INTERFACES

- **Ethernet**: 1 x 100 Mbps (RJ45), 1 x 10/100 Mbps (RJ45), 4.3" only 1 x 10/100Mbps (RJ45)
- **USB on back**: 2x USB 2.0 (4.3” only 1 x USB 2.0)
- **Serial interface**: 1 x RS232/422/485 (DB15M) / MPI 187.5 kbit/s
- **SD/SDHC card slot**: External access / removable V 2.0 (push-push type) from size 5.7"
C6 HMI LC
HIGHLIGHTS

- All-in-one automation solution
- Controller with EtherCAT™ master
- High-quality visualisation
- Integrated remote maintenance
- Micro UPS for protection of non-volatile data
- Software tool for backup, restore and transfer of systems
C6 HMI LC

PROTECTION CLASS IP66

4:3 AND 16:9 FORMATS

ALUMINIUM FRAME

TOUCH SCREEN

16 MILLION COLOURS
Technical Data

CPU
- Processor: ARM Cortex A8 - Freescale i.MX535, 1 GHz, 400 MHz Memory Bus
- System memory: 1 GB DDR3-800
- Graphic controller: GPU with integrated LCD Controller

Mass Memory
- NAND Flash: 256 MB for operating system and runtime environments (internal, not removable)
- eMMC (Solid State Disk): 4 GB project memory for further free use

Operating Data
- Power supply: 18...36 V DC (isolated power supply)
- Operating environment: 0...50 °C, Rel. humidity 80% (without condensation)
- Storage conditions: -20...60 °C, Rel. humidity 80% (without condensation)

Operating System
- Windows Embedded Compact 7 Pro

Approvals
- CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (UL508)

Panel
- Display size: 5.7” 7”W 8.4” 10.1”W 10.4” 12.1”W 12.1”W 15” 15.6”W
- Format: 4:3 15:9 4:3 16:10 4:3 4:3 16:10 4:3 16:9
- Resolution: 640 x 480 800 x 480 800 x 600 1280 x 800 800 x 600 800 x 600 1280 x 800 1024 x 768 1366 x 768
- Colours: 256 K 16 M 16 M
- Brightness: 500 cd/m² 500 cd/m² 250 cd/m² 400 cd/m² 400 cd/m² 500 cd/m² 400 cd/m² 450 cd/m² 300 cd/m²
- Touch technology: Resistive 4 wire Resistive 5 wire
- Protection class: IP66 On front
- Front panel: Aluminium. Polycarbonate
TECHNICAL DATA

INTERFACES

Ethernet / EtherCAT® 1 x 100 Mbps (RJ45), 1 x 10/100 Mbps (RJ45)
USB on back 2 x USB 2.0
Serial interface 1 x RS232/422/485 (DB15M) / MPI 187.5 kbit/s
SD/SDHC card slot External access / removable V 2.0 (push-push type)

<table>
<thead>
<tr>
<th>PANEL SIZE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7”</td>
<td>175</td>
<td>145</td>
<td>5</td>
<td>40</td>
<td>–</td>
<td>7</td>
<td>–</td>
<td>131</td>
<td>–</td>
<td>–</td>
<td>161</td>
<td>164</td>
<td>134</td>
</tr>
<tr>
<td>7.0” W</td>
<td>215</td>
<td>155</td>
<td>5</td>
<td>40</td>
<td>–</td>
<td>7</td>
<td>–</td>
<td>141</td>
<td>–</td>
<td>–</td>
<td>201</td>
<td>204</td>
<td>144</td>
</tr>
<tr>
<td>8.4”</td>
<td>255</td>
<td>190</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>30</td>
<td>42</td>
<td>156</td>
<td>243</td>
<td>179</td>
</tr>
<tr>
<td>10.1”W</td>
<td>293</td>
<td>201.5</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>6.5</td>
<td>15</td>
<td>130</td>
<td>43.5</td>
<td>62</td>
<td>156</td>
<td>285</td>
<td>193.5</td>
</tr>
<tr>
<td>10.4”</td>
<td>295</td>
<td>230</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>70</td>
<td>62</td>
<td>156</td>
<td>283</td>
<td>219</td>
</tr>
<tr>
<td>12.1”</td>
<td>325</td>
<td>260</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>100</td>
<td>77</td>
<td>156</td>
<td>313</td>
<td>249</td>
</tr>
<tr>
<td>12.1”W</td>
<td>321</td>
<td>222.5</td>
<td>5</td>
<td>19.5</td>
<td>29</td>
<td>6.3</td>
<td>15</td>
<td>130</td>
<td>65</td>
<td>76</td>
<td>156</td>
<td>313</td>
<td>215</td>
</tr>
<tr>
<td>15.0”</td>
<td>390</td>
<td>305</td>
<td>6</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>145</td>
<td>109.5</td>
<td>156</td>
<td>378</td>
<td>294</td>
</tr>
<tr>
<td>15.6”W</td>
<td>420</td>
<td>265</td>
<td>6</td>
<td>19.5</td>
<td>29</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>105</td>
<td>124.5</td>
<td>156</td>
<td>410</td>
<td>255</td>
</tr>
</tbody>
</table>

Panel CUT OUT
HIGHLIGHTS

• All in One – Automation solution
• Synchronous realtime control with EtherCAT Master
• High quality visualisation
• Integrated remote maintenance
• Micro UPS for secure of non volatile memory
• Optimised processor power for synchronous motion control, rapid switching and detection of signals
• Smart system with integrated real-time controller, visualisation and remote monitoring supplemented by a wide range of interfaces (USB, Ethernet, EtherCAT®, CANopen, RS232/485)
C6 S14

- Aluminium frame
- Touch screen
- Protection class IP66
- 16 million colours
- 4:3 and 16:9 formats

- Aluminium glass
- Touch screen
- Protection class IP66
- 16 million colours
- 4:3 and 16:9 formats
CPU
- **Processor**: ARM Cortex A9 i.MX6 DualLite @ 1 GHz
- **System memory**: 1 GB DDR3-800
- **Graphic controller**: Integrated ARM iMX6 Coretex A9

MASS MEMORY
- **eMMC (Solid State Disk)**: 4 GB for operating system and runtime environments (internal, not removable)
- **Application memory**: 8 GB project memory for further free use
- **Retain memory**: 128 KB persistant and retain

OPERATING DATA
- **Power supply**: 18 . . . 36 V DC incl. micro UPS (First charge in 30s, recharge in 15s)
- **Operating environment**: 0 . . . 50 °C, Rel. humidity 80 % (without condensation)
- **Storage conditions**: -20 . . . 60 °C, Rel. humidity 80 % (without condensation)

OPERATING SYSTEM
- **Operating system**: Windows Embedded Compact 7 Pro

APPROVALS
- CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (61010)

PANEL resistive
<table>
<thead>
<tr>
<th>Display size</th>
<th>7”W</th>
<th>8.4”</th>
<th>10.1”W</th>
<th>10.4”</th>
<th>12.1”</th>
<th>12.1”W</th>
<th>15”</th>
<th>15.6”W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>15:9</td>
<td>4:3</td>
<td>16:10</td>
<td>4:3</td>
<td>4:3</td>
<td>16:10</td>
<td>4:3</td>
<td>16:9</td>
</tr>
<tr>
<td>Resolution</td>
<td>800 x 480</td>
<td>800 x 600</td>
<td>1280 x 800</td>
<td>800 x 600</td>
<td>800 x 600</td>
<td>1280 x 800</td>
<td>1024 x 768</td>
<td>1366 x 768</td>
</tr>
<tr>
<td>Colours</td>
<td>16 M</td>
</tr>
<tr>
<td>Brightness</td>
<td>500 cd/m²</td>
<td>350 cd/m²</td>
<td>400 cd/m²</td>
<td>400 cd/m²</td>
<td>450 cd/m²</td>
<td>400 cd/m²</td>
<td>450 cd/m²</td>
<td>400 cd/m²</td>
</tr>
<tr>
<td>Viewing angle (L:R/O:U)</td>
<td>140°, 130°</td>
<td>150°, 130°</td>
<td>170°, 170°</td>
<td>160°, 140°</td>
<td>160°, 140°</td>
<td>176°, 176°</td>
<td>160°, 140°</td>
<td>170°, 160°</td>
</tr>
<tr>
<td>Touch technology</td>
<td>Resistive 4 wire</td>
<td>Resistive 5 wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection class</td>
<td>IP66 on front</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front panel</td>
<td>Aluminium, Polycarbonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PANEL capacitive
<table>
<thead>
<tr>
<th>Display size</th>
<th>7”W</th>
<th>10.1”W</th>
<th>12.1”W</th>
<th>15.6”W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>15:9</td>
<td>16:10</td>
<td>16:10</td>
<td>16:9</td>
</tr>
<tr>
<td>Resolution</td>
<td>800 x 480</td>
<td>1280 x 800</td>
<td>1280 x 800</td>
<td>1366 x 768</td>
</tr>
<tr>
<td>Colours</td>
<td>16 M</td>
<td>16 M</td>
<td>16 M</td>
<td>16 M</td>
</tr>
<tr>
<td>Brightness</td>
<td>500 cd/m²</td>
<td>400 cd/m²</td>
<td>400 cd/m²</td>
<td>400 cd/m²</td>
</tr>
<tr>
<td>Viewing angle (L:R/O:U)</td>
<td>140°, 130°</td>
<td>170°, 170°</td>
<td>176°, 176°</td>
<td>170°, 160°</td>
</tr>
<tr>
<td>Touch technology</td>
<td>capacitive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection class</td>
<td>IP66 on front</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front panel</td>
<td>Aluminium, glas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTERFACES
- **Ethernet / EtherCAT®**: 2x 10/100/1000 Mbps (RJ45)
- **USB on back**: 2 x USB 2.0
- **Serial interface**: 1 x RS232/422/485 (DB15M) / MPI 187.5 kbit/s
- **CAN (optional)**: CAN Master / slave with termination resistor (DB9M)
- **SD/SDHC card slot**: External access / removable V 2.0 (push-push type)

PUSHBUTTON
- **Taster**: Hardware reset
- **Default settings**:

TECHNICAL DATA

PANEL capacitive

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0" W</td>
<td>204</td>
<td>147.6</td>
<td>4</td>
<td>48</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>137.5</td>
<td>–</td>
<td>–</td>
<td>194</td>
<td>197</td>
<td>140.5</td>
</tr>
<tr>
<td>10.1" W</td>
<td>293</td>
<td>201.5</td>
<td>5</td>
<td>18.8</td>
<td>37</td>
<td>6.5</td>
<td>14.9</td>
<td>130</td>
<td>43.6</td>
<td>41.8</td>
<td>196.5</td>
<td>285</td>
<td>193.5</td>
</tr>
<tr>
<td>12.1" W</td>
<td>321</td>
<td>222.5</td>
<td>5</td>
<td>21.5</td>
<td>37</td>
<td>6.5</td>
<td>14.9</td>
<td>130</td>
<td>65</td>
<td>55.7</td>
<td>196.5</td>
<td>313</td>
<td>215</td>
</tr>
<tr>
<td>15.6" W</td>
<td>420</td>
<td>267</td>
<td>6</td>
<td>19.5</td>
<td>37</td>
<td>8</td>
<td>14.9</td>
<td>130</td>
<td>105.1</td>
<td>104.3</td>
<td>196.5</td>
<td>410</td>
<td>255</td>
</tr>
</tbody>
</table>

PANEL resistive

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.0" W</td>
<td>215</td>
<td>155</td>
<td>5</td>
<td>48.6</td>
<td>–</td>
<td>7</td>
<td>–</td>
<td>141</td>
<td>–</td>
<td>–</td>
<td>201</td>
<td>204</td>
<td>144</td>
</tr>
<tr>
<td>8.4" W</td>
<td>255</td>
<td>190</td>
<td>5</td>
<td>19.6</td>
<td>37</td>
<td>7.5</td>
<td>15</td>
<td>130</td>
<td>30</td>
<td>21.7</td>
<td>196.5</td>
<td>243</td>
<td>179</td>
</tr>
<tr>
<td>10.1" W</td>
<td>293</td>
<td>201.5</td>
<td>5</td>
<td>19.6</td>
<td>37</td>
<td>6.5</td>
<td>14.9</td>
<td>130</td>
<td>43.6</td>
<td>41.7</td>
<td>196.5</td>
<td>285</td>
<td>193.5</td>
</tr>
<tr>
<td>10.4" W</td>
<td>295</td>
<td>230</td>
<td>5</td>
<td>19.6</td>
<td>37</td>
<td>7.5</td>
<td>14.9</td>
<td>130</td>
<td>70.1</td>
<td>41.7</td>
<td>196.5</td>
<td>283</td>
<td>219</td>
</tr>
<tr>
<td>12.1" W</td>
<td>325</td>
<td>260</td>
<td>5</td>
<td>19.6</td>
<td>37</td>
<td>7.5</td>
<td>14.9</td>
<td>130</td>
<td>100</td>
<td>56.8</td>
<td>196.5</td>
<td>313</td>
<td>249</td>
</tr>
<tr>
<td>12.1" W</td>
<td>321</td>
<td>222.5</td>
<td>5</td>
<td>19.6</td>
<td>37</td>
<td>6.5</td>
<td>14.9</td>
<td>130</td>
<td>65</td>
<td>55.8</td>
<td>196.5</td>
<td>313</td>
<td>215</td>
</tr>
<tr>
<td>15.0" W</td>
<td>390</td>
<td>305</td>
<td>6</td>
<td>19.6</td>
<td>37</td>
<td>7.5</td>
<td>14.9</td>
<td>130</td>
<td>72.6</td>
<td>89.3</td>
<td>196.5</td>
<td>378</td>
<td>294</td>
</tr>
<tr>
<td>15.6" W</td>
<td>420</td>
<td>265</td>
<td>6</td>
<td>19.6</td>
<td>37</td>
<td>7.5</td>
<td>14.9</td>
<td>130</td>
<td>105</td>
<td>104.2</td>
<td>196.5</td>
<td>410</td>
<td>255</td>
</tr>
</tbody>
</table>
C6 SMART
HIGHLIGHTS

- Super compact = 47 x 122 x 124
- DIN rail IPC with flexible expandable I/O assemblies and integrated micro UPS
- Optimised processor power for synchronous motion control, rapid switching and detection of signals
- Smart system with integrated real-time controller, visualisation and remote monitoring supplemented by a wide range of interfaces (DVI, USB, Ethernet, EtherCAT®, CANopen, RS232/485)
C6 SMART

- STATUS-LED
- ETHERCAT
- USB
- ETHERNET
- ETHERCAT
- SERIAL (OPTIONAL)
- CAN (OPTIONAL)
- DC POWER SUPPLY
- GRAPHICS

Diagram:
- C6 Monitor
- C6 Smart
- EtherCAT
- H6 Multi Axis
- PM Motor
- DVI / USB
TECHNICAL DATA

CPU
- **Processor**: ARM iMX6 Dual Core Cortex-A9 @ 1 GHz
- **System memory**: RAM 1 GB
- **Graphic controller**: Integrated in ARM iMX6 Cortex A9

MASS MEMORY
- **System memory**: 4 GB for operating system and runtime environments
- **Application memory**: 8 GB project memory for free use
- **Retain memory**: 128 KB persistent and retain

OPERATING DATA
- **Power supply**: 18...36 V DC incl. Micro UPS
- **Operating environment**: 0...50 °C, Rel. humidity up to 95 % (without condensation)
- **Storage conditions**: -20...60 °C, Rel. humidity up to 95 % (without condensation)

OPERATING SYSTEM
- **Windows Embedded Compact 7 Pro**

APPROVALS
- CE, cULus
C6 SMART

RESET BUTTON

RESTORE BUTTON, ZUM ZURÜCKSETZEN DES STEUERUNGSSYSTEMS

INTEGRIERTE MICRO USV
TECHNICAL DATA

INTERFACES

Ethernet 1 x 10/100/1000 Mbps (RJ45)
EtherCAT® 1 x EtherCAT® Master (RJ45) 1 x E-BUS Port (C6 IO Module)
USB 2 x USB 2.0
Monitor output 1 x DVI-D
Diagnostics Multicolour LED

OPTIONS

Serial interfaces 1 x RS232/485 opto-isolated
CAN CAN Master / Slave with terminating resistor

PUSHBUTTON

Taster Hardware reset
Default settings

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>122</td>
<td>124</td>
<td>42,8</td>
<td>17,5</td>
</tr>
</tbody>
</table>
C6 COMPACT
HIGHLIGHTS

- True real-time performance thanks to powerful 32-bit microcontroller with integrated Floating Point Unit
- No operating system to reduce resources
- Programming and code processing to IEC 61131-3
- Rapid real-time bus system with integrated EtherCAT®-Master
- Various slave interfaces as optional equipment
C6 COMPACT

- SERIAL (RS232 / 485)
- FIELDBUS (OPTIONAL)
- STATUS-LED
- ETHERNET
- TOP HAT RAIL MOUNTING
- DC POWER SUPPLY
 - 4X DI / 4X DO
- MULTIFUNCTION SWITCH
- C6 HMI
- C6 COMPACT
- LAN
- EtherCAT
- S6 Servo Drive
- AC Gear Motor
- PM Motor
- C6 Inverter
- C6 I/O
- SLAVE / Third party device
CPU

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>SH7269 - 32-Bit RISC Microcomputer SuperHTM RISC engine inc. Floating Point Unit</td>
</tr>
<tr>
<td>Mass memory</td>
<td></td>
</tr>
<tr>
<td>System memory</td>
<td>256 MB Flash, Boot Application + files, 32 MB RAM, Code + Data</td>
</tr>
<tr>
<td>Retain memory</td>
<td>32 KB</td>
</tr>
</tbody>
</table>

OPERATING DATA

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>18 . . . 30 V DC</td>
</tr>
<tr>
<td>Operating environment</td>
<td>-10 . . . 45 °C, Rel. humidity 5 . . . 80 % (without condensation)</td>
</tr>
<tr>
<td>Storage conditions</td>
<td>-25 . . . 70 °C, Rel. humidity 5 . . . 80 % (without condensation)</td>
</tr>
</tbody>
</table>

APPROVALS

<table>
<thead>
<tr>
<th>Approval</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td></td>
</tr>
</tbody>
</table>
C6 COMPACT

- ETHERCAT
- DIRECT AXIS INTERFACES HSP 5
- OPTIONAL FIELBUS INTERFACE
- SERIAL INTERFACE RS232/485

INTERFACES

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>1 x 10/100 Mbps (RJ45)</td>
</tr>
<tr>
<td>EtherCAT®</td>
<td>1 x EtherCAT® Master (RJ45)</td>
</tr>
<tr>
<td>HSPS</td>
<td>4 x KEB HSPS (RJ45)</td>
</tr>
<tr>
<td>Serial</td>
<td>1 x RS232/485</td>
</tr>
<tr>
<td>Diagnostic LED</td>
<td></td>
</tr>
</tbody>
</table>

OPTIONS

<table>
<thead>
<tr>
<th>Fieldbus systems</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Profibus Slave interface</td>
</tr>
<tr>
<td></td>
<td>Profinet Slave interface</td>
</tr>
<tr>
<td></td>
<td>EtherCAT® Slave interface</td>
</tr>
<tr>
<td></td>
<td>CAN Master/Slave interface</td>
</tr>
<tr>
<td></td>
<td>Interbus Slave interface</td>
</tr>
<tr>
<td></td>
<td>Powerlink Slave interface</td>
</tr>
</tbody>
</table>

DIGITAL I/O’S

- 4 x Digital input (1 x fast input: 100 µs)
- 4 x Digital output (24 V; max. 0.7 A per channel), short-circuit resistant

TYPE

<table>
<thead>
<tr>
<th>TYPE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6 Compact</td>
<td>45</td>
<td>130</td>
<td>35</td>
<td>41.3</td>
<td>126.5</td>
<td>118</td>
</tr>
</tbody>
</table>
C6 SAFETY

PLC / I/O
HIGHLIGHTS

- Freely programmable Safety PLC (IEC 61508 SIL3 and DIN EN ISO 13849-1 PLe)
- Certified safety function modules
- Substantial reduction in time spent in development, verification and testing of a safety application
- Programming by means of CODESYS Safety by main controller and EtherCAT® connection
CAUTION
Risk of Electrical Shock
Capacitors discharge time is 5 minutes.
A fault protective switch is not permissible as the only protective measure!

ETHERCAT FIELDBUS FAIL SAFE
OVER ETHERCAT (FSoE)

REDUNDANT SAFETY CONTROLLER

SAFETY CONTROLLER INTEGRATED IN CONTROL CONCEPT
<table>
<thead>
<tr>
<th>C6 SAFETY CONTROLLER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety protocol</td>
<td>FSoE</td>
</tr>
<tr>
<td>Safety standard</td>
<td>IEC 61508 SIL3 and DIN EN ISO 13849-1 PLe</td>
</tr>
<tr>
<td>Approvals</td>
<td>CE, cULus (in preparation), TÜV Rheinland (in preparation)</td>
</tr>
<tr>
<td>Runtime system</td>
<td>CODESYS RT Safety</td>
</tr>
<tr>
<td>Programming tool</td>
<td>CODESYS Safety integrated from COMBIVIS studio 6 V3.6.60</td>
</tr>
<tr>
<td>E-Bus power consumption</td>
<td>300mA</td>
</tr>
<tr>
<td>Power supply</td>
<td>Via E-Bus connection</td>
</tr>
<tr>
<td>Resistance to interference</td>
<td>EN 61000-6-2/EN 61000-6-4</td>
</tr>
<tr>
<td>Resistance to vibration/shock</td>
<td>EN 60068-2-6/EN60068-2-27</td>
</tr>
<tr>
<td>Signal display</td>
<td>Status LEDs (EtherCAT®, Safety, Power)</td>
</tr>
<tr>
<td>Ambient conditions</td>
<td>0 °C . . . +55 °C, IP20</td>
</tr>
<tr>
<td>Housing</td>
<td>Aluminium carrier, exterior plastic 25 x 120 x 90 mm</td>
</tr>
</tbody>
</table>
C6 SAFETY I/O

ETHERCAT FELDBUS
SAFETY OVER ETHERCAT (FSoE)

SIGNAL DISPLAY

SECURE CONNECTION
INPUTS/OUTPUTS

EXTRA ADDRESSING
FSOE SLAVE FOR
SAFETY REASONS

Safety over
EtherCAT.

EtherCAT.
C6 SAFETY INPUT / OUTPUT TERMINALS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety protocol</td>
<td>FSoE</td>
</tr>
<tr>
<td>Safety standard</td>
<td>IEC 61508 SIL3 and DIN EN ISO 13849-1 Ple</td>
</tr>
<tr>
<td>Number of inputs</td>
<td>4 safe inputs</td>
</tr>
<tr>
<td>Number of outputs</td>
<td>2 safe outputs (IMAX = 2A)</td>
</tr>
<tr>
<td>Cycled outputs (OSSD)</td>
<td>4</td>
</tr>
<tr>
<td>Reaction time</td>
<td>< 1 ms (read input, write to E-Bus)</td>
</tr>
<tr>
<td>Fault reaction time</td>
<td>≤ Watchdog time (adjustable)</td>
</tr>
<tr>
<td>Extended diagnostics</td>
<td>Via COE</td>
</tr>
<tr>
<td>Signal display</td>
<td>LEDs per I/O: spatially assigned to the terminal point Status LEDs (EtherCAT®, Safety, Power)</td>
</tr>
<tr>
<td>E-Bus power consumption</td>
<td>275 mA</td>
</tr>
<tr>
<td>Power supply</td>
<td>24 V DC (-15% / +20%)</td>
</tr>
<tr>
<td>Resistance to interference</td>
<td>EN 61000-6-2/ EN 61000-6-4</td>
</tr>
<tr>
<td>Resistance to vibration/shock</td>
<td>EN 60068-2-6 / EN60068-2-27</td>
</tr>
<tr>
<td>Approvals</td>
<td>CE, cULus (in preparation), TÜV Rheinland (in preparation)</td>
</tr>
<tr>
<td>Ambient conditions</td>
<td>0 °C . . . +55 °C, IP20</td>
</tr>
<tr>
<td>Housing</td>
<td>Aluminium carrier, external plastic 25 x 120 x 90 mm</td>
</tr>
</tbody>
</table>
C6 ROUTER
HIGHLIGHTS

- Remote monitoring using Ethernet-based router
- Worldwide support from several server locations
- Also available as router with integrated 2G/3G/3G+ modem
- Access to remote devices via Ethernet or serial interface
- Proven COMBIVIS connect software connects the plant to be monitored to your workplace via VPN
- Additional HMI functionality for datalogging, long-term machine diagnostics and notification by E-Mail and SMS
C6 ROUTER

<table>
<thead>
<tr>
<th>Feature</th>
<th>C6 ROUTER E1</th>
<th>C6 ROUTER E2</th>
<th>C6 ROUTER M1</th>
<th>C6 ROUTER M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote maintenance</td>
<td>CONNECT</td>
<td>CONNECT</td>
<td>CONNECT</td>
<td>CONNECT</td>
</tr>
<tr>
<td>Visualisation</td>
<td>-</td>
<td>HMI</td>
<td>-</td>
<td>HMI</td>
</tr>
</tbody>
</table>

MOBILE

<table>
<thead>
<tr>
<th>Feature</th>
<th>E1</th>
<th>E2</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile phone network</td>
<td>-</td>
<td>-</td>
<td>2G/3G/3G + EDGE/HSPA Quadband Modem up to 5.76 Mbps upload / 14.4 Mbps download</td>
<td></td>
</tr>
<tr>
<td>Antenna</td>
<td>-</td>
<td>-</td>
<td>1 x SMA plug (various additional antenna options)</td>
<td></td>
</tr>
<tr>
<td>SIM</td>
<td>-</td>
<td>-</td>
<td>1 x SIM Card (mini) socket push-push type</td>
<td></td>
</tr>
</tbody>
</table>

CPU

<table>
<thead>
<tr>
<th>Feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>ARM Cortex A8 processor Freescale® i.MX535 1 GHz</td>
</tr>
</tbody>
</table>

MEMORY

<table>
<thead>
<tr>
<th>Feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>System memory</td>
<td>RAM - 512 MB</td>
</tr>
<tr>
<td>NAND Flash</td>
<td>256 MB for operating system and runtime environments (internal, not removable)</td>
</tr>
<tr>
<td>eMMC (Solid State Disk)</td>
<td>2 GB project memory for free use</td>
</tr>
</tbody>
</table>

OPERATING DATA

<table>
<thead>
<tr>
<th>Feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>9 . . . 36 V DC</td>
</tr>
<tr>
<td>Operating environment</td>
<td>0 . . . 50 °C (-20 . . . 70 °C Option), Rel. humidity up to 95 % (without condensation)</td>
</tr>
<tr>
<td>Storage conditions</td>
<td>-20 . . . 60 °C (-20 . . . 70 °C Option), Rel. humidity up to 95 % (without condensation)</td>
</tr>
</tbody>
</table>

OPERATING SYSTEM

<table>
<thead>
<tr>
<th>Feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Embedded Compact 7 Pro</td>
<td></td>
</tr>
</tbody>
</table>

APPROVALS

<table>
<thead>
<tr>
<th>Feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CE, cULus</td>
<td></td>
</tr>
</tbody>
</table>

INTERFACES

<table>
<thead>
<tr>
<th>Feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet WAN</td>
<td>1 x 10/100 Mbps (RJ45)</td>
</tr>
<tr>
<td>Ethernet LAN</td>
<td>1 x 100 Mbps (RJ45)</td>
</tr>
<tr>
<td>USB on back</td>
<td>1 x USB 2.0</td>
</tr>
<tr>
<td>Serial interface</td>
<td>1 x RS232/422/485 (DB15M) / MPI 187. kbit/s (galvanically separated)</td>
</tr>
</tbody>
</table>

DIGITAL I/O'S

<table>
<thead>
<tr>
<th>Feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td>IN0 - Secured activation WAN connection. Function controlled by COMBIVIS Control Center</td>
</tr>
<tr>
<td>Outputs</td>
<td>OUT0 C6 Router WAN connection active (output relay max. 200 mA /24 V DC)</td>
</tr>
<tr>
<td></td>
<td>OUT1 remote monitoring active (output relay max. 200 mA /24 V DC)</td>
</tr>
</tbody>
</table>

PUSHBUTTON

<table>
<thead>
<tr>
<th>Feature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Buttons</td>
<td>C6 Router Hardware Reset</td>
</tr>
<tr>
<td></td>
<td>C6 Router default setting</td>
</tr>
</tbody>
</table>
C6 ROUTER

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6 ROUTER EX</td>
<td>35</td>
<td>177</td>
<td>116</td>
<td>138</td>
<td>159</td>
<td>4</td>
</tr>
<tr>
<td>C6 ROUTER MX</td>
<td>45</td>
<td>177</td>
<td>116</td>
<td>138</td>
<td>159</td>
<td>4</td>
</tr>
</tbody>
</table>

- **Stick antenna**
- **Stick antenna extension 3, 5, 10 m**
- **Stick antenna Wall mounted IP67, 3 m**
- **Outdoor antenna IP67, 1 m**

140
The C6 Router can be configured via two different communication paths:

- manually with local network connection
- from exported configuration data via USB memory stick

The configuration of the C6 Router is protected with necessary log-on data.

The routers available in the local network are identified via unique MAC addresses.

The configuration level is easy to understand, self-explanatory and limited to a minimum number of parameters.

However a number of communication paths are possible, guaranteeing a high usage density.
After a few minutes of router configuration, you have worldwide access to remote devices for maintenance and monitoring - irrespective of device type and manufacturer.

CONFIGURATION STEPS

Step 1

WAN-Port as Internet access (server infrastructure) – IP address can be assigned statically or automatically via DHCP.

Step 2

IP configurations from one or more local automation networks accessible via VPN tunnel.

Step 3

As well as local Ethernet-linked networks, serial connections can be set up via a VPN tunnel.
Step 4
Variable configuration with regard to connection type (WAN, Modem), handling of Internet activation (constant, via SMS and/or digital input).

Step 5
The LAN-WAN routing allows configuration of rules between the two Ethernet interfaces of the router (LAN and WAN) which define the static routing of individual IP addresses or address ranges.

Step 6
To be able to use Internet access via modem (UMTS), the provider access data (SIM card) can be configured here.

Step 7
Domain registration opens the possibilities of remote device maintenance, and access can be managed user oriented.
An industrial PC (IPC for short) is a computer used for tasks in the industrial sector. Typical sectors are industrial automation and visualisation. IPC technology differs from embedded technology primarily in the higher performance of processor platforms and higher quality of operating systems.

Further requirements for IPC are a long availability period of at least 10 years, reliable hardware which is designed for rough industrial environments, and processing of control tasks in real-time.

- C6 E22 Panel / Box / Book mount
- C6 P34 Panel / Box / Book mount
HIGHLIGHTS

- Fanless IPC up to 50 °C operating temperature
- Intel® Bay Trail Platform with 64 Bit architecture
 - Celeron® J1900 2 Ghz, 4 Cores, 4 Threads
- Wide range of 16 million colours LED backlight TFT LCD Displays with resistive or capacitive touch technology
 - 4:3 Format: 10.4", 12.1", 15", 17" (5:4); 19" (5:4); 16:9 Format: 10.1", 12.1" (16:10), 15.6", 18.5", 21.5", 24"
- Slim Version (SL) for installation situations with limited space
- Smart memory concept for maximum flexibility in application
C6 E22 PANEL

- FULL HD RESOLUTION
- 4:3 AND 16:9 FORMATS
- RESISTIVE TOUCH TECHNOLOGY
- FULL HD RESOLUTION
- 4:3 AND 16:9 FORMATS
- RESISTIVE TOUCH TECHNOLOGY
- GLASS FRONT
- CAPACITIVE TOUCH TECHNOLOGY
- PROTECTION CLASS IP66
- USB ON FRONT

C6 IPC

EtherCAT

S6 Servo Driver

PM Motor
TECHNICAL DATA

CPU
- **Processor**: Intel® Celeron® J1900, 2.00 GHz (2.42 GHz Burst), 2 MB L2 cache, 4 cores, 4 threads
- **System memory**: RAM 2 GB (1 x SODIMM DDR3 Module)
- **Graphic controller**: Intel® HD Graphics integrated in Intel® Celeron® microprocessor, 688 MHz

MASS MEMORY
- **mSATA**: 32 GB for operating system and runtime environments (internal, not removable)
- **Cfast slot**: 16 GB or expandable memory sizes as project memory for free use

OPERATING DATA
- **Power supply**: 18 ... 32 V DC (isolated power supply)
- **Operating environment**: 0 ... 50 °C, Rel. humidity 80 % (without condensation)
- **Storage conditions**: -20 ... 60 °C, Rel. humidity 80 % (without condensation)
- **Protection class**: IP66 front

OPERATING SYSTEM
- **Windows Embedded Standard 7P 32 Bit**

APPROVALS
- CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (UL508)

PANEL
- **Resistive**
 - **Display size**: 10.4”, 12.1”, 15”, 17”, 19”
 - **Format**: 4:3, 4:3, 4:3, 5:4, 5:4
 - **Resolution**: 800 x 600, 800 x 600, 1024 x 768, 1280 x 1024, 1280 x 1024
 - **Colours**: 16 M, 16 M, 16 M, 16 M, 16 M
 - **Brightness**: 400 cd/m², 500 cd/m², 500 cd/m², 350 cd/m², 350 cd/m²
 - **Touch technology**: Resistive 5 wire
 - **Front panel**: Aluminium. Polycarbonate

PANEL WIDE
- **Resistive**
 - **Display size**: 10.1” W, 12.1” W, 15.6” W, 18.5” W, 21.5” W, 24” W
 - **Format**: 16:10, 16:10, 16:9, 16:9, 16:9
 - **Resolution**: 1280 x 800, 1280 x 800, 1366 x 768, 1366 x 768, 1920 x 1080, 1920 x 1080
 - **Colours**: 16 M, 16 M, 16 M, 16 M, 16 M
 - **Brightness**: 400 cd/m², 400 cd/m², 400 cd/m², 300 cd/m², 300 cd/m²
 - **Touch technology**: Resistive 5 wire
 - **Front panel**: Aluminium. Polycarbonate

PANEL WIDE
- **Capacitive**
 - **Display size**: 10.1” W, 12.1” W, 15.6” W, 18.5” W, 21.5” W
 - **Format**: 16:10, 16:10, 16:9, 16:9
 - **Resolution**: 1280 x 800, 1280 x 800, 1366 x 768, 1366 x 768, 1920 x 1080
 - **Colours**: 16 M, 16 M, 16 M, 16 M
 - **Brightness**: 400 cd/m², 400 cd/m², 300 cd/m², 300 cd/m²
 - **Touch technology**: Capacitive 4 Finger
 - **Front panel**: Aluminium, Glass
C6 E22 PANEL

PANEL SL

- RS232
- 2 x USB 2.0 / 1 x USB 3.0
- 2 x ETHERNET 10/100/1000
- DVI

PANEL S1

- PCI-SLOT
- 2 x ETHERNET 10/100/1000
- 2 x USB 2.0 / 1 x USB 3.0
- RS232
- ADD-ON INTERFACE
- DVI
TECHNICAL DATA

INTERFACES

<table>
<thead>
<tr>
<th></th>
<th>SL</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet / EtherCAT®</td>
<td>2 x Ethernet 10/100/1000 Mbps (2 x Intel® I210)</td>
<td>2 x Ethernet 10/100/1000 Mbps (2 x Intel® I210)</td>
</tr>
<tr>
<td>USB on front</td>
<td>1 x USB 2.0 (resistive)</td>
<td>1 x USB 2.0 (resistive)</td>
</tr>
<tr>
<td>USB on back</td>
<td>1 x USB 3.0, 2 x USB 2.0</td>
<td>1 x USB 3.0, 2 x USB 2.0</td>
</tr>
<tr>
<td>Serial interface</td>
<td>1 x RS232 (DB9M)</td>
<td>1 x RS232 (DB9M)</td>
</tr>
<tr>
<td>Monitor output</td>
<td>1 x DVI-I (DVI-D + VGA, for VGA an adapter is required)</td>
<td>1 x DVI-I (DVI-D + VGA, for VGA an adapter is required)</td>
</tr>
<tr>
<td>Expansion slot</td>
<td>-</td>
<td>1 x PC (for fieldbus cards)</td>
</tr>
</tbody>
</table>

Add-on interface

- 1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)
- 1 x Ethernet 10/100/1000 Mbps

Capacitive

<table>
<thead>
<tr>
<th>LCD TFT</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E1L</th>
<th>E1H</th>
<th>E2</th>
<th>F (SL/S1)</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,1”W</td>
<td>293</td>
<td>212</td>
<td>277</td>
<td>196</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>29 / 77</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>12,1”W</td>
<td>335</td>
<td>270</td>
<td>315</td>
<td>250</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>15,6”W</td>
<td>433</td>
<td>320</td>
<td>435</td>
<td>335</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>19”</td>
<td>490</td>
<td>388</td>
<td>470</td>
<td>368</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>21,5”W</td>
<td>579</td>
<td>517</td>
<td>559</td>
<td>457</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>24”</td>
<td>640</td>
<td>542</td>
<td>620</td>
<td>502</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>23</td>
<td>8</td>
</tr>
</tbody>
</table>

Resistive

<table>
<thead>
<tr>
<th>LCD TFT</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E1L</th>
<th>E1H</th>
<th>E2</th>
<th>F (SL/S1)</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,1”W</td>
<td>293</td>
<td>212</td>
<td>277</td>
<td>196</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>29 / 77</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>10,4”</td>
<td>300</td>
<td>245</td>
<td>280</td>
<td>225</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>12,1”</td>
<td>335</td>
<td>270</td>
<td>315</td>
<td>250</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>12,1”W</td>
<td>331</td>
<td>234</td>
<td>313</td>
<td>216</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>29 / 77</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>15”</td>
<td>390</td>
<td>315</td>
<td>370</td>
<td>295</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>15,6”W</td>
<td>430</td>
<td>275</td>
<td>310</td>
<td>255</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>17”</td>
<td>455</td>
<td>355</td>
<td>435</td>
<td>335</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>18,5”W</td>
<td>500</td>
<td>320</td>
<td>480</td>
<td>300</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>19”</td>
<td>490</td>
<td>388</td>
<td>470</td>
<td>368</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>21,5”W</td>
<td>579</td>
<td>367</td>
<td>559</td>
<td>347</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>24”</td>
<td>640</td>
<td>402</td>
<td>620</td>
<td>382</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>29 / 77</td>
<td>23</td>
<td>8</td>
</tr>
</tbody>
</table>

Interfaces

Ethernet / EtherCAT®
- 2 x Ethernet 10/100/1000 Mbps (2 x Intel® I210)

USB on front
- 1 x USB 2.0 (resistive)

USB on back
- 1 x USB 3.0, 2 x USB 2.0

Serial interface
- 1 x RS232 (DB9M)

Monitor output
- 1 x DVI-I (DVI-D + VGA, for VGA an adapter is required)

Expansion slot
- -

Add-on interface
- 1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)
- 1 x Ethernet 10/100/1000 Mbps
<table>
<thead>
<tr>
<th>CPU</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Intel® Celeron® J1900, 2.00 GHz (2.42 GHz Burst), 2 MB L2 cache, 4 cores, 4 threads</td>
</tr>
<tr>
<td>System memory</td>
<td>RAM 2 GB (1 x SODIMM DDR3 Module)</td>
</tr>
<tr>
<td>Graphic controller</td>
<td>Intel® HD Graphics integrated in Intel® Celeron™ microprocessor, 688 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASS MEMORY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mSATA</td>
<td>32 GB for operating system and runtime environments (internal, not removable)</td>
</tr>
<tr>
<td>Cfast slot</td>
<td>16 GB or expandable memory sizes as project memory for free use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATING DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>18 . . . 32 V DC (isolated power supply)</td>
</tr>
<tr>
<td>Operating environment</td>
<td>0 . . . 50 °C, Rel. humidity 80 % (without condensation)</td>
</tr>
<tr>
<td>Storage conditions</td>
<td>-20 . . . 60 °C, Rel. humidity 80 % (without condensation)</td>
</tr>
<tr>
<td>Protection class</td>
<td>IP20</td>
</tr>
</tbody>
</table>

| **OPERATING SYSTEM** | Windows Embedded Standard 7P 32 Bit |

| **APPROVALS** | CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (UL508) |
C6 E22 BOX

BOX SL

- RS232
- 2 x USB 2.0 / 1 x USB 3.0
- 2 x ETHERNET 10/100/1000
- DVI

BOX S1

- RS232
- 2 x USB 2.0 / 1 x USB 3.0
- 2 x ETHERNET 10/100/1000
- DVI

ADD-ON INTERFACES

PCI-SLOT
TECHNICAL DATA

INTERFACES

<table>
<thead>
<tr>
<th></th>
<th>SL</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet / EtherCAT®</td>
<td>2 x Ethernet 10/100/1000 Mbps (2 x Intel® I210)</td>
<td>2 x Ethernet 10/100/1000 Mbps (2 x Intel® I210)</td>
</tr>
<tr>
<td>USB on front</td>
<td>1 x USB 2.0 (resistive)</td>
<td>1 x USB 2.0 (resistive)</td>
</tr>
<tr>
<td>USB on back</td>
<td>1 x USB 3.0, 2 x USB 2.0</td>
<td>1 x USB 3.0, 2 x USB 2.0</td>
</tr>
<tr>
<td>Serial interface</td>
<td>1 x RS232 (DB9M)</td>
<td>1 x RS232 (DB9M)</td>
</tr>
<tr>
<td>Monitor output</td>
<td>1 x DVI-I (DVI-D + VGA, for VGA an adapter is required)</td>
<td>1 x DVI-I (DVI-D + VGA, for VGA an adapter is required)</td>
</tr>
<tr>
<td>Expansion slot</td>
<td>-</td>
<td>1 x PC (for fieldbus cards)</td>
</tr>
<tr>
<td>Add-on interface</td>
<td>-</td>
<td>1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x Ethernet 10/100/1000 Mbps</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>D (mm)</th>
<th>E (mm)</th>
<th>F (mm)</th>
<th>G (mm)</th>
<th>H (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>303.4</td>
<td>185</td>
<td>35</td>
<td>6</td>
<td>29</td>
<td>20.2</td>
<td>253</td>
<td>5</td>
</tr>
<tr>
<td>S1</td>
<td>303.4</td>
<td>215.5</td>
<td>82.8</td>
<td>6</td>
<td>76.8</td>
<td>20.2</td>
<td>253</td>
<td>5</td>
</tr>
</tbody>
</table>
CPU
- **Processor**: Intel® Celeron® J1900, 2.00 GHz (2.42 GHz Burst), 2 MB L2 cache, 4 cores, 4 threads
- **System memory**: RAM 2 GB (1 x SODIMM DDR3 Module)
- **Graphic controller**: Intel® HD Graphics integrated in Intel® Celeron™ microprocessor, 688 MHz

MASS MEMORY
- **mSATA**: 32 GB for operating system and runtime environments (internal, not removable)
- **Cfast slot**: 16 GB or expandable memory sizes as project memory for free use

OPERATING DATA
- **Power supply**: 18 . . . 32 V DC (isolated power supply)
- **Operating environment**: 0 . . . 50 °C, Rel. humidity 80 % (without condensation)
- **Storage conditions**: -10 . . . 60 °C, Rel. humidity 80 % (without condensation)
- **Protection class**: IP20

OPERATING SYSTEM
- Windows Embedded Standard 7P 32 Bit

APPROVALS
- CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (UL61010)
TECHNICAL DATA

INTERFACES

<table>
<thead>
<tr>
<th></th>
<th>DVI</th>
<th>RVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet / EtherCAT®</td>
<td>2 x Ethernet 10/100/1000 Mbps (2 x Intel® I210)</td>
<td>2 x Ethernet 10/100/1000 Mbps (2 x Intel® I210)</td>
</tr>
<tr>
<td>USB</td>
<td>2 x USB 2.0 (Typ A)</td>
<td>2 x USB 2.0 (Typ A)</td>
</tr>
<tr>
<td>USB on front</td>
<td>1 x USB 3.0</td>
<td>1 x USB 3.0</td>
</tr>
<tr>
<td>Serial interface</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Monitor output</td>
<td>1 x DVI-I</td>
<td>1 x RVL out (RJ45)</td>
</tr>
<tr>
<td>Add-on interface</td>
<td>1 x RS232/422/485</td>
<td>1 x RS232/422/485</td>
</tr>
<tr>
<td></td>
<td>1 x Ethernet 10/100/1000 Mbps</td>
<td>1 x Ethernet 10/100/1000 Mbps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM</td>
<td>71</td>
<td>220</td>
<td>159.5</td>
<td>19</td>
<td>182</td>
</tr>
</tbody>
</table>

![Diagram of interfaces](image1)

![Diagram of interfaces](image2)
HIGHLIGHTS

• Fanless IPC with high-performance processor up to 50 °C operating temperature
• Intel® Skylake Platform (Core i)
 - Core i5-6440EQ 2.70 GHz, Quad Core - 4 Threads
• Displays with resistive or capacitive touch technology
 - 4:3 Format: 12.1", 15", 17" (5:4), 19" (5:4); 16:9 Format: 12.1" (16:10), 15.6", 18.5", 21.5", 24"
• Smart memory concept for maximum flexibility in use
C6 P34 PANEL

FULL HD RESOLUTION
4:3 AND 16:9 FORMATS
RESISTIVE TOUCH TECHNOLOGY
USB ON FRONT

GLASS FRONT
CAPACITIVE TOUCH TECHNOLOGY
PROTECTION CLASS IP66
TECHNICAL DATA

CPU
- **Processor**: Intel® Core™ i5-6440EQ, 2.70 GHz (3.40 GHz Turbo), 6MB smart cache, 4 cores, 4 threads, Soldered on-board
- **System memory**: RAM 4 GB (1 x SODIMM DDR4-2133)
- **Graphic controller**: Intel® HD Graphics 510 integrated into Intel® Celeron™ microprocessor, 950MHz

MASS MEMORY
- **mSATA**: 32 GB for operating system and runtime environments (internal, not removable)
- **Cfast slot**: 16 GB or expandable memory sizes as project memory for free use

OPERATING DATA
- **Power supply**: 18 . . . 32 V DC (isolated power supply)
- **Operating environment**: 0 . . . 50 °C, Rel. humidity 80 % (without condensation)
- **Storage conditions**: -20 . . . 60 °C, Rel. humidity 80 % (without condensation)
- **Protection class**: IP66 front

OPERATING SYSTEM
- **Windows Embedded Standard 7P 32 Bit**

APPROVALS
- CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (UL61010) pending

PANEL
- **resistive**
 - **Display size**: 12.1”, 15”, 17”, 19”
 - **Format**: 4:3, 4:3, 5:4, 5:4
 - **Resolution**: 800 x 600, 1024 x 768, 1280 x 1024, 1280 x 1024
 - **Colours**: 16 M, 16 M, 16 M, 16 M
 - **Brightness**: 450 cd/m², 500 cd/m², 350 cd/m², 350 cd/m²
 - **Viewing angle (L:R/O:U)**: 160°, 140°, 170°, 170°, 170°, 170°
 - **Touch technology**: Resistive 5 wire
 - **Front panel**: Aluminium, Polycarbonate

PANEL WIDE
- **resistive**
 - **Display size**: 12.1”W, 15.6”W, 18.5”W, 21.5”W, 24”W
 - **Format**: 16:10, 16:9, 16:9, 16:9, 16:9
 - **Resolution**: 1280 x 800, 1366 x 768, 1366 x 768, 1920 x 1080, 1920 x 1080
 - **Colours**: 16 M, 16 M, 16 M, 16 M, 16 M
 - **Brightness**: 400 cd/m², 400 cd/m², 300 cd/m², 300 cd/m², 300 cd/m²
 - **Touch technology**: Resistive 5 wire
 - **Front panel**: Aluminium, Polycarbonate

PANEL WIDE
- **capacitive**
 - **Display size**: 12.1”W, 15.6”W, 18.5”W, 21.5”W, 24”W
 - **Format**: 16:10, 16:9, 16:9, 16:9, 16:9
 - **Resolution**: 1280 x 800, 1366 x 768, 1366 x 768, 1920 x 1080, 1920 x 1080
 - **Colours**: 16 M, 16 M, 16 M, 16 M, 16 M
 - **Brightness**: 400 cd/m², 400 cd/m², 300 cd/m², 300 cd/m², 300 cd/m²
 - **Touch technology**: Capacitive 4 Finger
 - **Front panel**: Aluminium, Glass
C6 P34 PANEL

PANEL S0

RS232

DC POWER SUPPLY

1 X RS232/422/485 + 1 X USB 2.0 (OPTIONAL)

2 X ETHERNET 10/100/1000

1 X USB 3.0

DVI

2 X ETHERNET 10/100/1000

2 X USB 3.0

2 X USB 2.0

PANEL S1

1 X RS232/422/485 + 1 X USB 2.0 (OPTIONAL)

1 X RS232

DC POWER SUPPLY

PCI-SLOT

2 X ETHERNET 10/100/1000

1 X USB 3.0

DVI

2 X ETHERNET 10/100/1000

2 X USB 3.0

2 X USB 2.0
TECHNICAL DATA

INTERFACES

<table>
<thead>
<tr>
<th>Interface</th>
<th>S0</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet / EtherCAT®</td>
<td>4 x Ethernet 10/100/1000 Mbps (3 x Intel® I210 + 1 x Intel® I219LM)</td>
<td>4 x Ethernet 10/100/1000 Mbps (3 x Intel® I210 + 1 x Intel® I219LM)</td>
</tr>
<tr>
<td>USB on back</td>
<td>3 x USB 3.0 (Type A), 2 x USB 2.0 (Type A)</td>
<td>3 x USB 3.0 (Type A), 2 x USB 2.0 (Type A)</td>
</tr>
<tr>
<td>Serial interface</td>
<td>1 x RS232 (DB9M)</td>
<td>1 x RS232 (DB9M)</td>
</tr>
<tr>
<td>Monitor output</td>
<td>1 x DVI-D</td>
<td>1 x DVI-D</td>
</tr>
<tr>
<td>Expansion slot</td>
<td>-</td>
<td>1 x PC (for fieldbus cards)</td>
</tr>
<tr>
<td>Add-on interface</td>
<td>1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)</td>
<td>1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)</td>
</tr>
</tbody>
</table>

LCD TFT

<table>
<thead>
<tr>
<th>Resolution</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E1L</th>
<th>E1H</th>
<th>E2</th>
<th>F (S0/S1)</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistive</td>
<td></td>
</tr>
<tr>
<td>12,1”</td>
<td>335</td>
<td>270</td>
<td>315</td>
<td>250</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70 / 100</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>12,1”W</td>
<td>331</td>
<td>234</td>
<td>313</td>
<td>216</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>70 / 100</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>15”</td>
<td>390</td>
<td>315</td>
<td>370</td>
<td>295</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70 / 100</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>15,6”W</td>
<td>430</td>
<td>275</td>
<td>410</td>
<td>255</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70 / 100</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>17”</td>
<td>455</td>
<td>355</td>
<td>435</td>
<td>335</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70 / 100</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>18,5”W</td>
<td>500</td>
<td>320</td>
<td>480</td>
<td>300</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70 / 100</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>19”</td>
<td>490</td>
<td>388</td>
<td>470</td>
<td>368</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70 / 100</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>21,5”W</td>
<td>579</td>
<td>367</td>
<td>559</td>
<td>347</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70 / 100</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>24”W</td>
<td>640</td>
<td>402</td>
<td>620</td>
<td>382</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70 / 100</td>
<td>21,3</td>
<td>8</td>
</tr>
<tr>
<td>Capacitive</td>
<td></td>
</tr>
<tr>
<td>12,1”W</td>
<td>331</td>
<td>234</td>
<td>313</td>
<td>218</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>70 / 100</td>
<td>22</td>
<td>5</td>
</tr>
<tr>
<td>15,6”W</td>
<td>433</td>
<td>280,5</td>
<td>410</td>
<td>255</td>
<td>15</td>
<td>10,5</td>
<td>11,5</td>
<td>70 / 100</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>18,5”W</td>
<td>503</td>
<td>320,5</td>
<td>480</td>
<td>300</td>
<td>10</td>
<td>10,5</td>
<td>11,5</td>
<td>70 / 100</td>
<td>35</td>
<td>6</td>
</tr>
<tr>
<td>21,5”W</td>
<td>581,5</td>
<td>367,5</td>
<td>559</td>
<td>347</td>
<td>10</td>
<td>10,5</td>
<td>11,5</td>
<td>70 / 100</td>
<td>35</td>
<td>8</td>
</tr>
<tr>
<td>24”W</td>
<td>640</td>
<td>402</td>
<td>620</td>
<td>382</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>70 / 100</td>
<td>21</td>
<td>8</td>
</tr>
</tbody>
</table>
C6 P34 BOX

![Image of C6 P34 BOX with components labeled: PM Motor, EtherCAT, S6 Servo Driver, C6 IPC, C6 Monitor]
TECHNICAL DATA

<table>
<thead>
<tr>
<th>CPU</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Intel® Core™ i5-6440EQ, 2.70 GHz (3.40 GHz Turbo), 6MB smart cache, 4 cores, 4 threads, Soldered on-board</td>
</tr>
<tr>
<td>System memory</td>
<td>RAM 4 GB (1 x SODIMM DDR4-2133)</td>
</tr>
<tr>
<td>Graphic controller</td>
<td>Intel® HD Graphics 510 integrated into Intel® Celeron™ microprocessor, 950MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASS MEMORY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mSATA</td>
<td>32 GB for operating system and runtime environments (internal, not removable)</td>
</tr>
<tr>
<td>Cfast slot</td>
<td>16 GB or expandable memory sizes as project memory for free use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATING DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>18 . . . 32 V DC (isolated power supply)</td>
</tr>
<tr>
<td>Operating environment</td>
<td>0 . . . 50 °C, Rel. humidity 80 % (without condensation)</td>
</tr>
<tr>
<td>Storage conditions</td>
<td>-20 . . . 60 °C, Rel. humidity 80 % (without condensation)</td>
</tr>
<tr>
<td>Protection class</td>
<td>IP66 front</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATING SYSTEM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Windows Embedded Standard 7P 32 Bit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPROVALS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (UL61010) pending</td>
</tr>
</tbody>
</table>
C6 P34 BOX

BOX S0

- RS232
- DC POWER SUPPLY
- 2 X ETHERNET 10/100/1000
- 1 X USB 3.0
- DVI
- 2 X USB 3.0
- 2 X USB 2.0

BOX S1

- ADD-ON INTERFACES
 - RS232
 - DC POWER SUPPLY
 - 2 X ETHERNET 10/100/1000
- PCI-SLOT
 - 2 X ETHERNET 10/100/1000
- 1 X USB 3.0
- DVI
- 2 X USB 3.0
- 2 X USB 2.0
TECHNICAL DATA

INTERFACES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>A (mm)</th>
<th>B (mm)</th>
<th>C (mm)</th>
<th>C1 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>338.4</td>
<td>246</td>
<td>75.8</td>
<td>-</td>
</tr>
<tr>
<td>S1</td>
<td>338.4</td>
<td>246</td>
<td>-</td>
<td>105.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S0</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet / EtherCAT®</td>
<td>Ethernet / EtherCAT®</td>
</tr>
<tr>
<td>4 x Ethernet 10/100/1000 Mbps (3 x Intel® I210 + 1 x Intel® I219LM)</td>
<td>4 x Ethernet 10/100/1000 Mbps (3 x Intel® I210 + 1 x Intel® I219LM)</td>
</tr>
<tr>
<td>USB on back</td>
<td>USB on back</td>
</tr>
<tr>
<td>3 x USB 3.0 (Type A), 2 x USB 2.0 (Type A)</td>
<td>3 x USB 3.0 (Type A), 2 x USB 2.0 (Type A)</td>
</tr>
<tr>
<td>Serial interface</td>
<td>Serial interface</td>
</tr>
<tr>
<td>1 x RS232 (DB9M)</td>
<td>1 x RS232 (DB9M)</td>
</tr>
<tr>
<td>Monitor output</td>
<td>Monitor output</td>
</tr>
<tr>
<td>1 x DVI-D</td>
<td>1 x DVI-D</td>
</tr>
<tr>
<td>Expansion slot</td>
<td>Expansion slot</td>
</tr>
<tr>
<td>-</td>
<td>1 x PC (for fieldbus cards)</td>
</tr>
<tr>
<td>Add-on interface</td>
<td>Add-on interface</td>
</tr>
<tr>
<td>1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)</td>
<td>1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)</td>
</tr>
</tbody>
</table>
CPU
- **Processor**: Intel® Core™ i5-6440EQ, 2.70 GHz (3.40 GHz Turbo), 6MB smart cache, 4 cores, 4 threads, Soldered on-board
- **System memory**: RAM 4 GB (1 x SODIMM DDR4-2133)
- **Graphic controller**: Intel® HD Graphics 510 integrated into Intel® Celeron™ microprocessor, 950MHz

MASS MEMORY
- **mSATA**: 32 GB for operating system and runtime environments (internal, not removable)
- **Cfast slot**: 16 GB or expandable memory sizes as project memory for free use

OPERATING DATA
- **Power supply**: 18 . . . 32 V DC (isolated power supply)
- **Operating environment**: 0 . . . 50 °C, Rel. humidity 80 % (without condensation)
- **Storage conditions**: -10 . . . 60 °C, Rel. humidity 80 % (without condensation)
- **Protection class**: IP20

OPERATING SYSTEM
- Windows Embedded Standard 7P 32 Bit

APPROVALS
- CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (UL61010) pending
172

C6 P34 BM

DC POWER SUPPLY

RVL OUT (OPTIONAL)

2 X ETHERNET (10/100/1000 MBPS)

2 X ETHERNET (10/100/1000 MBPS)

2 X USB 2.0 (TYPE A)

2 X USB 3.0 (TYPE A)

DVI

RS232

POWER ON

UPS

HDD ACTIVITY

OVER TEMPERATURE / BATTERY FAULT

WATCHDOG / FACTORY RESET

STATUS PLC

STATUS BUS

POWER ON RESET

SYSTEM RESET

WATCHDOG RESET

PLC RUN / STOP / RESET

USB 3.0

BACKUP BATTERY

2.5" SATA HDD / SSD (OPTIONAL)

CFAST MEMORY

2.5" SATA HDD / SSD (OPTIONAL)
TECHNICAL DATA

INTERFACES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90</td>
<td>268</td>
<td>225</td>
<td>19</td>
<td>230</td>
</tr>
</tbody>
</table>

S0 / D0

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>DVI</th>
<th>RVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet / EtherCAT®</td>
<td>4 x Ethernet 10/100/1000 Mbps (3 x Intel® I210 + 1 x Intel® I219LM)</td>
<td>4 x Ethernet 10/100/1000 Mbps (3 x Intel® I210 + 1 x Intel® I219LM)</td>
</tr>
<tr>
<td>USB on back</td>
<td>3 x USB 3.0 (Type A), 2 x USB 2.0 (Type A)</td>
<td>3 x USB 3.0 (Type A), 2 x USB 2.0 (Type A)</td>
</tr>
<tr>
<td>Serial interface</td>
<td>1 x RS232 (DB9M)</td>
<td>1 x RS232 (DB9M)</td>
</tr>
<tr>
<td>Monitor output</td>
<td>1 x DVI-D (DB9M)</td>
<td>1 x DVI-D (DB9M)</td>
</tr>
<tr>
<td>Add-on interface</td>
<td>1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)</td>
<td>1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)</td>
</tr>
<tr>
<td>HDD / SSD 2,5"</td>
<td>-</td>
<td>1 x HDD / SSD SATA 3</td>
</tr>
</tbody>
</table>

S0 / D1

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>DVI</th>
<th>RVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet / EtherCAT®</td>
<td>4 x Ethernet 10/100/1000 Mbps (3 x Intel® I210 + 1 x Intel® I219LM)</td>
<td>4 x Ethernet 10/100/1000 Mbps (3 x Intel® I210 + 1 x Intel® I219LM)</td>
</tr>
<tr>
<td>USB on back</td>
<td>3 x USB 3.0 (Type A), 2 x USB 2.0 (Type A)</td>
<td>3 x USB 3.0 (Type A), 2 x USB 2.0 (Type A)</td>
</tr>
<tr>
<td>Serial interface</td>
<td>1 x RS232 (DB9M)</td>
<td>1 x RS232 (DB9M)</td>
</tr>
<tr>
<td>Monitor output</td>
<td>1 x DVI-D (DB9M)</td>
<td>1 x DVI-D (DB9M)</td>
</tr>
<tr>
<td>Add-on interface</td>
<td>1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)</td>
<td>1 x RS232/422/485 opto isolated + 1 x USB 2.0 (Type -A)</td>
</tr>
<tr>
<td>HDD / SSD 2,5"</td>
<td>-</td>
<td>1 x HDD / SSD SATA 3</td>
</tr>
</tbody>
</table>

Diagrams

- Diagram A
- Diagram C
The industrial monitor series for visualisation and operation of applications is used to complete embedded and IPC systems without displays. The series offers a sophisticated design with a wide range of monitor sizes and the choice between resistive and capacitive touch based on the latest technologies, to complete the KEB range.

High protection classes and reliable hardware designed for rough industrial environments distinguish the monitor systems.

- **C6 MONITOR**
- **C6 AMM**
HIGHLIGHTS

- Industrial Touch Monitor with high protection class, 16 million colours, up to full HD resolution and long-term availability
- LED backlight TFT LCD displays with resistive or capacitive touch technology
 - 4:3 format: 12.1", 15", 17" (5:4), 19" (5:4)
 - 16:9 format: 12.1" (16:10), 15.6", 18.5", 21.5", 24"
- Integrated extension module for graphics and touch with only one cable up to 100m
C6 MONITOR

- FULL HD RESOLUTION
- 4:3 AND 16:9 FORMATS
- RESISTIVE TOUCH TECHNOLOGY
- USB ON FRONT
- GLASS FRONT
- CAPACITIVE TOUCH TECHNOLOGY
- PROTECTION CLASS IP66

CAT5E SFTP
bis 100 m

Extension cable

DVI
IPC

Extension module
TECHNICAL DATA

PANEL

resistive

<table>
<thead>
<tr>
<th>Display size</th>
<th>12.1“</th>
<th>15“</th>
<th>17“</th>
<th>19“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>4:3</td>
<td>4:3</td>
<td>5:4</td>
<td>5:4</td>
</tr>
<tr>
<td>Resolution</td>
<td>800 x 600</td>
<td>1024 x 768</td>
<td>1280 x 1024</td>
<td>1280 x 1024</td>
</tr>
<tr>
<td>Brightness</td>
<td>500 cd/m²</td>
<td>500 cd/m²</td>
<td>350 cd/m²</td>
<td>350 cd/m²</td>
</tr>
<tr>
<td>Viewing angle (L:R/O:U)</td>
<td>160°, 140°</td>
<td>170°, 170°</td>
<td>170°, 160°</td>
<td>170°, 160°</td>
</tr>
<tr>
<td>Touch technology</td>
<td>Resistive 5 wire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB on front</td>
<td>1 x USB 2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Panel</td>
<td>Aluminium, Polycarbonate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PANEL WIDE

resistive

<table>
<thead>
<tr>
<th>Display size</th>
<th>10.1”W</th>
<th>12.1”W</th>
<th>15.6”W</th>
<th>18.5”W</th>
<th>21.5”W</th>
<th>24”W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>16:10</td>
<td>16:10</td>
<td>16:9</td>
<td>16:9</td>
<td>16:9</td>
<td>16:9</td>
</tr>
<tr>
<td>Resolution</td>
<td>1280 x 800</td>
<td>1280 x 800</td>
<td>1366 x 768</td>
<td>1366 x 768</td>
<td>1920 x 1080</td>
<td>1920 x 1080</td>
</tr>
<tr>
<td>Brightness</td>
<td>400 cd/m²</td>
<td>400 cd/m²</td>
<td>400 cd/m²</td>
<td>300 cd/m²</td>
<td>300 cd/m²</td>
<td>300 cd/m²</td>
</tr>
<tr>
<td>Viewing angle (L:R/O:U)</td>
<td>170°, 170°</td>
<td>176°, 176°</td>
<td>170°, 170°</td>
<td>170°, 150°</td>
<td>140°</td>
<td>178°, 178°</td>
</tr>
<tr>
<td>Touch technology</td>
<td>Resistive 5 wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB on front</td>
<td>1 x USB 2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Panel</td>
<td>Aluminium, Polycarbonate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

capacitive

<table>
<thead>
<tr>
<th>Display size</th>
<th>10.1”W</th>
<th>12.1”W</th>
<th>15.6”W</th>
<th>18.5”W</th>
<th>21.5”W</th>
<th>24”W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>16:10</td>
<td>16:10</td>
<td>16:9</td>
<td>16:9</td>
<td>16:9</td>
<td>16:9</td>
</tr>
<tr>
<td>Resolution</td>
<td>1280 x 800</td>
<td>1280 x 800</td>
<td>1366 x 768</td>
<td>1366 x 768</td>
<td>1920 x 1080</td>
<td>1920 x 1080</td>
</tr>
<tr>
<td>Brightness</td>
<td>400 cd/m²</td>
<td>400 cd/m²</td>
<td>400 cd/m²</td>
<td>300 cd/m²</td>
<td>300 cd/m²</td>
<td>300 cd/m²</td>
</tr>
<tr>
<td>Viewing angle (L:R/O:U)</td>
<td>170°, 170°</td>
<td>176°, 176°</td>
<td>170°, 170°</td>
<td>170°, 150°</td>
<td>140°</td>
<td>178°, 178°</td>
</tr>
<tr>
<td>Touch technology</td>
<td>Capacitive 4 Finger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB on front</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Panel</td>
<td>Aluminium, Glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATING DATA

- **Power supply**: 18 . . . 32 V DC (isolated power supply)
- **Operating environment**: 0 . . . 50 °C, Rel. humidity 80 % (without condensation)
- **Storage conditions**: -20 . . . 60 °C, Rel. humidity 80 % (without condensation)
- **Protection class**: IP66 On front

APPROVALS

CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1), cULus LISTED (UL508)
TECHNICAL DATA

INTERFACES

<table>
<thead>
<tr>
<th>Resistive</th>
<th>DVI</th>
<th>Capacitive</th>
<th>RVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD TFT</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>10.1"W</td>
<td>293</td>
<td>212</td>
<td>277</td>
</tr>
<tr>
<td>12.1"</td>
<td>335</td>
<td>270</td>
<td>315</td>
</tr>
<tr>
<td>12.1"W</td>
<td>331</td>
<td>234</td>
<td>313</td>
</tr>
<tr>
<td>15"</td>
<td>390</td>
<td>315</td>
<td>370</td>
</tr>
<tr>
<td>15.6"W</td>
<td>430</td>
<td>275</td>
<td>410</td>
</tr>
<tr>
<td>17"</td>
<td>455</td>
<td>355</td>
<td>435</td>
</tr>
<tr>
<td>18.5"W</td>
<td>500</td>
<td>320</td>
<td>480</td>
</tr>
<tr>
<td>19"</td>
<td>490</td>
<td>388</td>
<td>470</td>
</tr>
<tr>
<td>21.5"W</td>
<td>579</td>
<td>367</td>
<td>559</td>
</tr>
<tr>
<td>24"W</td>
<td>640</td>
<td>402</td>
<td>620</td>
</tr>
</tbody>
</table>

INTERFACES

USB on back	**2 x USB 2.0 (Type A) + 1 x USB 2.0 (Type B)**	**2 x USB 2.0 (Type A)**
Standard Version up to 10 m	**1 x DVI-I and 1x VGA**	**-**
Monitor input		
Extended Version up to 100 m	**-**	**1 x RJ45 (Extender input)**
Extender input		

Interfaces

- **DVI**
 - USB on back: 2 x USB 2.0 (Type A) + 1 x USB 2.0 (Type B)
 - Standard Version up to 10 m: 1 x DVI-I and 1x VGA
 - Extended Version up to 100 m: -

- **RVL**
 - USB on back: 2 x USB 2.0 (Type A)

Dimensions

- **LCD TFT**
 - Capacitive: 10.1"W, 12.1"W, 15.6"W, 18.5"W, 21.5"W, 24"W

Interfaces

- **DVI**
 - USB on back: 2 x USB 2.0 (Type A) + 1 x USB 2.0 (Type B)
 - Standard Version up to 10 m: 1 x DVI-I and 1x VGA
 - Extended Version up to 100 m: -

- **RVL**
 - USB on back: 2 x USB 2.0 (Type A)
C6 AMM
HIGHLIGHTS

- Resistive or capacitive touch panel up to four wide screen formats
- Fully enclosed housing protection class IP65
- Individually configurable monitor system with up to 8 freely definable elements
- RFID reader/writer transponder with USB 2.0 interface designed for button area installations of C6 AMM systems
- Simple installation and wiring thanks to innovative hardware concept
- Integrated extension module for graphics and touch with just one cable up to 100 m
- Supports various makes of mounting arm mechanisms
C6 AMM ARM MOUNTING MONITOR

HD / FULL HD RESOLUTION

RESISTIVE OR CAPACITIVE TOUCH TECHNOLOGY

UP TO 8 CONFIGURABLE I/O ELEMENTS WITH ONE TERMINAL BLOCK

VARIOUS INTERFACES, SIGNAL DISPLAYS, BUTTONS OR SWITCHES AVAILABLE

HD / FULL HD RESOLUTION

RESISTIVE OR CAPACITIVE TOUCH TECHNOLOGY

UP TO 8 CONFIGURABLE I/O ELEMENTS WITH ONE TERMINAL BLOCK

VARIOUS INTERFACES, SIGNAL DISPLAYS, BUTTONS OR SWITCHES AVAILABLE

CAT5E SFTP bis 100 m

Extension cable

DVI

USB

IPC

Extension module

HD / FULL HD RESOLUTION

RESISTIVE OR CAPACITIVE TOUCH TECHNOLOGY

UP TO 8 CONFIGURABLE I/O ELEMENTS WITH ONE TERMINAL BLOCK

VARIOUS INTERFACES, SIGNAL DISPLAYS, BUTTONS OR SWITCHES AVAILABLE

HD / FULL HD RESOLUTION

RESISTIVE OR CAPACITIVE TOUCH TECHNOLOGY

UP TO 8 CONFIGURABLE I/O ELEMENTS WITH ONE TERMINAL BLOCK

VARIOUS INTERFACES, SIGNAL DISPLAYS, BUTTONS OR SWITCHES AVAILABLE

HD / FULL HD RESOLUTION

RESISTIVE OR CAPACITIVE TOUCH TECHNOLOGY

UP TO 8 CONFIGURABLE I/O ELEMENTS WITH ONE TERMINAL BLOCK

VARIOUS INTERFACES, SIGNAL DISPLAYS, BUTTONS OR SWITCHES AVAILABLE

HD / FULL HD RESOLUTION

RESISTIVE OR CAPACITIVE TOUCH TECHNOLOGY

UP TO 8 CONFIGURABLE I/O ELEMENTS WITH ONE TERMINAL BLOCK

VARIOUS INTERFACES, SIGNAL DISPLAYS, BUTTONS OR SWITCHES AVAILABLE

HD / FULL HD RESOLUTION

RESISTIVE OR CAPACITIVE TOUCH TECHNOLOGY

UP TO 8 CONFIGURABLE I/O ELEMENTS WITH ONE TERMINAL BLOCK

VARIOUS INTERFACES, SIGNAL DISPLAYS, BUTTONS OR SWITCHES AVAILABLE
TECHNICAL DATA

PANEL

<table>
<thead>
<tr>
<th>Display size</th>
<th>15.6”W</th>
<th>18.5”W</th>
<th>21.5”W</th>
<th>15.6”W</th>
<th>18.5”W</th>
<th>21.5”W</th>
<th>24”W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>16:9</td>
<td>16:9</td>
<td>16:9</td>
<td>16:9</td>
<td>16:9</td>
<td>16:9</td>
<td>16:9</td>
</tr>
<tr>
<td>Resolution</td>
<td>1366 x 768</td>
<td>1366 x 768</td>
<td>1920 x 1080</td>
<td>1366 x 768</td>
<td>1366 x 768</td>
<td>1920 x 1080</td>
<td>1920 x 1080</td>
</tr>
<tr>
<td>Colours</td>
<td>16 M</td>
</tr>
<tr>
<td>Brightness</td>
<td>400 cd/m²</td>
<td>300 cd/m²</td>
<td>300 cd/m²</td>
<td>400 cd/m²</td>
<td>300 cd/m²</td>
<td>300 cd/m²</td>
<td>300 cd/m²</td>
</tr>
<tr>
<td>Touch technology</td>
<td>Resistive 5-wire</td>
<td>capacitive 4 finger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection class</td>
<td>Full IP65</td>
<td>Full IP65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front panel</td>
<td>Aluminium</td>
<td>Aluminium, glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>Arm mounting bottom or top (straight elements, no oblique elements)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical adapter</td>
<td>RITTAL (CPS) / ROLEC (TARAPLUS) / HASEKE (ULT COUPLING 48)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OPERATING DATA

<table>
<thead>
<tr>
<th>Power supply</th>
<th>18 . . . 32 V DC (isolated power supply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating environment</td>
<td>0 . . . 50 °C, Rel. humidity 80 % (without condensation)</td>
</tr>
<tr>
<td>Storage conditions</td>
<td>-20 . . . 60 °C, Rel. humidity 80 % (without condensation)</td>
</tr>
</tbody>
</table>

APPROVALS

- CE (EN 55022, EN 61000-3-2/3, EN 55024, EN 60950-1)
C6 AMM ARM MOUNTING MONITOR

DVI

- DVI AND VGA
- 2 X USB (TYPE A)
- 1 X USB (TYPE B)
- DC POWER SUPPLY

RVL

- RJ45 (EXTENDER INPUT)
- 2 X USB (TYPE A)
INTERFACES | DVI | RVL
---|---|---
USB on back | 2 x USB 2.0 (Type A) + 1 x USB 2.0 (Type B) | 2 x USB 2.0 (Type A)
Standard Version up to 10 m Monitor input | 1 x DVI-I and 1x VGA | -
Extended Version up to 100 m Extender input | - | 1 x RJ45 (Extender input)

LCD TFT	A	B	C	D	E	F
15.6"W | 433 | 320 | 240 | 13.5 | 30 | 54 |
18.5"W | 503 | 358 | 276 | 14.5 | 36 | 91.5 |
21.5"W | 582 | 403 | 314 | 18 | 40 | 134 |
24"W | 640 | 439 | 347 | 19.4 | 40 | 175 |
ETHERCAT FIELDBUS I/O

Analog or digital — the reception and emission of signals on the periphery of a plant requires decentralisation of the connection technology and a suitable medium for signal transmission to the central intelligence.

The C6 I/O System is based on the economically optimum Ethernet-based hardware and, thanks to the EtherCAT® protocol standard, brings the proven properties of real-time communication to every single element of the input/output level. Just 25 mm wide, the plug-in system has a high packing density of up to 32 digital inputs and outputs.

- C6 I/O
- C6 SAFETY I/O
C6 REMOTE I/O

- **Release Lever**
- **EtherCAT Bus Coupler**
- **Shielded Connection to Housing Carrier**
- **Labeling Clip**
- **Status LEDs**
- **Top-Hat Rail Fixing and Function Earth**
- **Signal Status LEDs**

Diagram:

- **COE**
- **Slave**
- **Master**

Components:

- C6 Coupler
- C6 I/O
- EtherCAT

Labeling:

- Signal Status LEDs
- Function Earth
- Release Lever
HIGHLIGHTS

- Complete EtherCAT® I/O system in real time
- Compact construction (32DI on 25 mm)
- Great range of modules
- Plug-in terminals and modules

C6 I/O

<table>
<thead>
<tr>
<th>Fieldbus</th>
<th>EtherCAT® 100 Mbits/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>W x H x D</td>
<td>25 x 120 x 90 mm</td>
</tr>
<tr>
<td>Installation</td>
<td>35 mm DIN top-hat rail</td>
</tr>
<tr>
<td>Controller</td>
<td>ET 1100</td>
</tr>
<tr>
<td>E-Bus connection</td>
<td>10-in system plug in side wall</td>
</tr>
<tr>
<td>End module</td>
<td>not necessary</td>
</tr>
<tr>
<td>Power supply</td>
<td>24 V DC -20 % +25 %</td>
</tr>
<tr>
<td>Potential separation</td>
<td>Modules to each other and to bus</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 … +55 °C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-25 … +70 °C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>5 … 95 %, without condensation</td>
</tr>
<tr>
<td>Protection class</td>
<td>IP20</td>
</tr>
<tr>
<td>Resistance to interference</td>
<td>Zone B to EN 61131-2</td>
</tr>
</tbody>
</table>

TECHNICAL DATA

SHIELDED CONNECTION TERMINAL
C6 REMOTE I/O ETHERCAT BUSMODULES

BUS MODULE
- Fieldbus: EtherCAT® 100 Mbits/s
- Power supply: 24 V DC -20 % +25 %
- Potential separation: Modules to each other and to bus
- Operating temperature: 0 … +55 °C
- Storage temperature: -25 … +70 °C
- Relative humidity: 5 … 95 %, without condensation
- E-Bus supply: max. 3 A (approx. 20 modules)

COUPLER
- Fieldbus: EtherCAT® 100 Mbits/s
- Power supply: 24 V DC -20 % +25 %
- Potential separation: Modules to each other and to bus
- Operating temperature: 0 … +55 °C
- Storage temperature: -25 … +70 °C
- Relative humidity: 5 … 95 %, without condensation
- E-Bus supply: max. 3 A (approx. 20 modules)
BUS MODULE

- **Fieldbus**: 2x EtherCAT® 100 Mbits/s
- **Power supply**: Via E-Bus
- **Potential separation**: Modules to each other against bus
- **Operating temperature**: 0 ... +55 °C
- **Storage temperature**: -25 ... +70 °C
- **Relative humidity**: 5 ... 95 %, without condensation
- **E-Bus load**: 160 mA for OUT1

 210 mA for OUT1 + OUT2

EXTENDER

- **Fieldbus**: 2x EtherCAT® 100 Mbits/s
- **Power supply**: Via E-Bus
- **Potential separation**: Modules to each other against bus
- **Operating temperature**: 0 ... +55 °C
- **Storage temperature**: -25 ... +70 °C
- **Relative humidity**: 5 ... 95 %, without condensation
- **E-Bus load**: 160 mA for OUT1

 210 mA for OUT1 + OUT2

BUS MODULE

- **Fieldbus**: Profinet Slave
- **Ethernet IP Slave**: EtherCAT® Slave
- **Powerlink Slave**: Power supply
- **Via E-Bus**: Modules to each other against bus
- **Operating temperature**: 0 ... +55 °C
- **Storage temperature**: -25 ... +70 °C
- **Relative humidity**: 5 ... 95 %, without condensation
- **E-Bus load**: 240 mA
C6 REMOTE I/O ETHERCAT BUSMODULES +I/O

BUS MODUL
- **Fieldbus**: EtherCAT® 100 Mbits/s
- **Power supply**: 24 V DC -20 % +25 %
- **Potential separation**: Modules to each other and to bus
- **Operating temperature**: 0 +55 °C
- **Storage temperature**: -25 +70 °C
- **Relative humidity**: 5 95 %, without condensation
- **E-Bus supply**: max. 3 A (approx. 20 modules)
- **Digital inputs**: 16
- **Input delay**: 3 ms
- **Signal level (EN 61131-3, Type 1)**
 - Off: -3…5 V
 - On: 15…30 V
- **Digital outputs**: 16
- **Max. current**: 0.5 A per output
- **Total current**: max. 8 A
- **E-Bus load**: 135 mA

COUPLER + D16 / D016

DI16 / D016 LS
- **Digital inputs**: 16
- **Input delay**: 1 ms
- **Signal level (EN 61131-3, Type 1)**
 - Off: -3…5 V
 - On: 15…30 V
- **Digital outputs**: 16
- **Max. current**: 0.5 A per output
- **Total current**: max. 8 A
- **E-Bus load**: 135 mA
C6 REMOTE I/O ETHERCAT DIGITAL IN-/OUTPUTS

DI16 / DO16
- Digital inputs: 16
- Input delay: 1 ms
- Signal level (EN 61131-3, Type 1):
 - Off: -3…5 V
 - On: 15…30 V
- Digital outputs: 16
- Max. current: 0.5 A per output
- Total current: max. 8 A
- E-Bus load: 135 mA

DI16/DO8 1A
- Digital inputs: 16
- Input delay: 1 ms
- Signal level (EN 61131-3, Type 1):
 - Off: -3…5 V
 - On: 15…30 V
- Digital outputs: 8
- Max. current: 1 A per output
- Total current: max. 8 A
- E-Bus load: 135 mA
C6 REMOTE I/O ETHERCAT DIGITAL INPUTS

DI16
- **Digital inputs**: 16
- **Input delay**: 1 ms
- **Signal level (EN 61131-3, Type 1)**
 - Off: -3...5 V
 - On: 15...30 V
- **Digital outputs**: -
- **Max. current**: -
- **Total current**: -
- **E-Bus load**: 100 mA

DI32
- **Digital inputs**: 32
- **Input delay**: 1 ms
- **Signal level (EN 61131-3, Type 1)**
 - Off: -3...5 V
 - On: 15...30 V
- **Digital outputs**: -
- **Max. current**: -
- **Total current**: -
- **E-Bus load**: 85 mA
D016 0,5A

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital inputs</td>
<td>-</td>
</tr>
<tr>
<td>Input delay</td>
<td>-</td>
</tr>
<tr>
<td>Signal level (EN 61131-3, Type 1)</td>
<td>-</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>16</td>
</tr>
<tr>
<td>Max. current</td>
<td>0.5 A per output</td>
</tr>
<tr>
<td>Total current</td>
<td>max. 8 A</td>
</tr>
<tr>
<td>E-Bus load</td>
<td>130 mA</td>
</tr>
</tbody>
</table>

D08 1A

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital inputs</td>
<td>-</td>
</tr>
<tr>
<td>Input delay</td>
<td>-</td>
</tr>
<tr>
<td>Signal level (EN 61131-3, Type 1)</td>
<td>-</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>8</td>
</tr>
<tr>
<td>Max. current</td>
<td>1 A per output</td>
</tr>
<tr>
<td>Total current</td>
<td>max. 8 A</td>
</tr>
<tr>
<td>E-Bus load</td>
<td>130 mA</td>
</tr>
</tbody>
</table>
C6 REMOTE I/O ETHERCAT RELAY OUTPUTS

DO8 RELAY NO 230 V

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital inputs</td>
<td>-</td>
</tr>
<tr>
<td>Input delay</td>
<td>-</td>
</tr>
<tr>
<td>Signal level (EN 61131-3, Type 1)</td>
<td>-</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>8</td>
</tr>
<tr>
<td>Max. current</td>
<td>5 A (resistive) / 2 A (inductive)</td>
</tr>
<tr>
<td>Switching voltage</td>
<td>max. 24 V DC / 230 V AC</td>
</tr>
<tr>
<td>Switching cycles mech. (min.)</td>
<td>2×10^7</td>
</tr>
<tr>
<td>Switching cycles elec. (min.)</td>
<td>3×10^5 (2 A / 30 V DC)</td>
</tr>
<tr>
<td>E-Bus load</td>
<td>130 mA</td>
</tr>
</tbody>
</table>
DOUBLE COUNTER

- **Encoder**: 2 A, B, Ref
- **Encoder type**: 5 V (RS422)
- **Count frequency**: max. 400kHz
- **Digital inputs**: 8
- **Input delay**: 1ms
- **Signal level (EN 61131-3, Type 1)**:
 - Off: -3…5 V
 - On: 15…30 V
- **Digital outputs**: 2
- **Max. current**: 2 A per output
- **Analog outputs**: -
- **Resolution**: -
- **E-Bus load**: 300 mA

DOUBLE COUNTER/POSI

- **Encoder**: 2 A, B, Ref
- **Encoder type**: 5 V (RS422)
- **Count frequency**: max. 400kHz
- **Digital inputs**: 8
- **Input delay**: 1ms
- **Signal level (EN 61131-3, Type 1)**:
 - Off: -3…5 V
 - On: 15…30 V
- **Digital outputs**: 2
- **Max. current**: 2 A per output
- **Analog outputs**: 2
- **Resolution**: 12 BIT
- **E-Bus load**: 300 mA
MIX02

- **Digital inputs**: 4 (8)
- **DI0..3**: 1ms
- **DI4**: 0.1ms
- **DI5..7**: 0.001ms
- **Counter (DI5)**: 500kHz (up to 1 MHz)
- **Digital outputs**: 24
- **DO0..7**: 0.5A
- **DO8..23**: 0.1A
- **Analog inputs**: 12 Bit 4 x 0..10V (also usable as DI, DI0..3)
- **Sampling rate**: 1ms
- **RS485**: potential-separated
- **Baud rate**: 2.4...921.6 kBit/s
- **E-Bus load**: 90 mA

DRIVE MODULE

- **Motor connection**: 2-phase stepper motor or brushless DC motor
- **Motor voltage**: 12 V .. 72 VDC / cULus: 12 V .. 42 VDC
- **Motor current nominal**: 5 A
- **Peak current**: Stepper motor: 10 A / brushless DC Motor: 15 A
- **Incremental emitter**: 5 V / 24 V (A, /A, B, /B, Z, /Z)
- **Hall emitter**: 5 V / 24 V (H1, H2, H3) or 3 extra zero-switching digital inputs
- **Digital inputs**: 5 x 1 ms configurable, e.g. reference switch, limit switch, release
- **Digital outputs**: 1 x 0.5 A (brake output or standard output)
- **Trigger**: CIA402
- **E-Bus load**: 100 mA
C6 REMOTE I/O ETHERCAT ANALOG INPUTS

AI4/8-U (CoE)
- Analog inputs: 8 single-ended or 4 differential
- Resolution: 13 Bit (1.221 μV unipolar/ 2.422 μV bipolar)
- Measurement range: 0…10 V, ±10 V
- Conversion time: 464 μs (if all channels are active)
- Output rate: -
- E-Bus load: 190 mA

AI4-I (CoE)
- Analog inputs: 4
- Resolution: 12 Bit (5.2 μA)
- Measurement range: 0…20 mA, 4…20 mA (end value 20 mA)
- Conversion time: 235 μs (if all channels are active)
- Output rate: -
- E-Bus load: 190 mA
C6 REMOTE I/O ETHERCAT ANALOG INPUTS

A18/16-U (CoE)
- Analog inputs: 16 single-ended or 8 differential
- Resolution: 13 Bit (1.221 µV unipolar/ 2.422 µV bipolar)
- Measurement range: 0...10 V, ±10 V
- Conversion time: 580 µs (if all channels are active)
- Output rate: -
- E-Bus load: 190 mA

A18-I (CoE)
- Analog inputs: 8
- Resolution: 12 Bit (5.2 µA)
- Measurement range: 0...20 mA, 4...20 mA (end value 20 mA)
- Conversion Time: 290 µs (if all channels are active)
- Output rate: -
- E-Bus load: 190 mA
A04-U/I

- Analog outputs: 4
- Resolution: 12 Bit
- Measurement range: 0…10 V, ±10 V, 0…20 mA
- Output rate: 220 ms
- E-Bus load: 150 mA
EtherCAT IO

<table>
<thead>
<tr>
<th>Channel</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
</table>

Analog Inputs

- **AI4-PT/NI/TC**
 - Analog inputs: 4
 - Resolution: 16 Bit
 - Conversion time: 50ms (adjustable)
 - E-Bus load: 170 mA

Thermoelement

- Sensor types: J, K, mV (internal)
- Cold point compensation: yes
- Measuring range Typ K: -200 °C...+1372 °C
- Measuring range Typ J: -50 °C...+760 °C
- Measuring range mV: -40 mV...+65 mV

Pt100 / Ni100

- Measuring range Pt: -75 °C...+670 °C
- Measuring range Ni: -60 °C...+250 °C
- Input resistance: 70...320 Ω
- Measuring current: 1 mA (typical)

Pt1000 / Ni1000

- Measuring range Pt: -75 °C...+670 °C
- Measuring range Ni: -60 °C...+250 °C
- Input resistance: 700...3200 Ω
- Measuring current: 0.1 mA (typical)
C6 REMOTE I/O ETHERCAT TEMPERATURE INPUTS

<table>
<thead>
<tr>
<th>A18-PT/NI/TC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog inputs</td>
<td>8</td>
</tr>
<tr>
<td>Resolution</td>
<td>16 Bit</td>
</tr>
<tr>
<td>Conversion time</td>
<td>50ms (adjustable)</td>
</tr>
<tr>
<td>E-Bus load</td>
<td>170 mA</td>
</tr>
</tbody>
</table>

Thermocouple

<table>
<thead>
<tr>
<th>Sensor types</th>
<th>J,K, mV (internal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold point compensation</td>
<td>yes</td>
</tr>
<tr>
<td>Measuring range Typ K</td>
<td>-200 °C… +1372 °C</td>
</tr>
<tr>
<td>Measuring range Typ J</td>
<td>-50 °C… +760 °C</td>
</tr>
<tr>
<td>Measuring range mV</td>
<td>-40 … +65 mV</td>
</tr>
</tbody>
</table>

Pt100 / Ni100

Measuring range Pt	-75 °C… +670 °C
Measuring range Ni	-60 °C… +250 °C
Input resistance	70 … 320 Ω
Measuring current	1 mA (typical)

Pt1000 / Ni1000

Measuring range Pt	-75 °C… +670 °C
Measuring range Ni	-60 °C… +250 °C
Input resistance	700 … 3200 Ω
Measuring current	0.1 mA (typical)
C6 REMOTE I/O POTENTIAL DISTRIBUTOR

POTENTIAL DISTRIBUTOR

<table>
<thead>
<tr>
<th>Connections</th>
<th>2x 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The module has 2 separate potential lines</td>
</tr>
<tr>
<td>E-Bus load</td>
<td>0 mA</td>
</tr>
</tbody>
</table>

The diagram shows a potential distributor with connections labeled from 0 to 15, but the specific connections and loading are not detailed in the text.
<table>
<thead>
<tr>
<th>Country</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Mailing Addresses</th>
<th>Internet Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>KEB Antriebstechnik Austria GmbH</td>
<td>+43 7243 53586-0 Fax: +43 7243 53586-21</td>
<td>Ritzstraße 8 4614 Marchtrenk Austria</td>
<td>www.keb.at</td>
</tr>
<tr>
<td>Belgium</td>
<td>KEB Automation KG</td>
<td>+32 544 37860 Fax: +32 544 37898</td>
<td>Herenveld 2 9500 Geraardsbergen Belgium</td>
<td>www.keb.de</td>
</tr>
<tr>
<td>Brazil</td>
<td>KEB South America – Regional Manager</td>
<td>+55 16 31161294 E-Mail: roberto.arias@keb.de</td>
<td>Rua Dr. Omar Pacheco Souza Ribenio, 70 BR-CEP 13569-430 Portal do Sol, São Carlos Brazil</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Headquarters</td>
<td></td>
<td>KEB Automation KG</td>
<td>www.keb.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Südstraße 38 32683 Barntrup Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Telefon +49 5263 401-0 Fax: +49 5263 401-116</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E-Mail: info@keb.de</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>Gear Motors</td>
<td></td>
<td>KEB Antriebstechnik GmbH</td>
<td>www.keb-drive.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wildbacher Straße 5 08289 Schneeberg Germany</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Telefon +49 3772 67-0 Fax: +49 3772 67-281</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E-Mail: info@keb-drive.de</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>KEB Italia S.r.l. Unipersonale</td>
<td></td>
<td>Via 02 3353531</td>
<td>www.keb.it</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tel: +39 02 3353531 Fax: +39 02 33500790</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>KEB Japan Ltd.</td>
<td>+81 33 445-8515 Fax: +81 33 445-8215</td>
<td>15 - 16, 2, Chome, Takana wa Minato-ku Tokyo 108 - 0074 Japan</td>
<td>www.keb.jp</td>
</tr>
<tr>
<td>P. R. China</td>
<td>KEB Power Transmission Technology (Shanghai) Co. Ltd.</td>
<td>+86 21 37746688 Fax: +86 21 37746600</td>
<td>No. 435 QianPu Road Chedun Town Songjiang District 201611 Shanghai P. R. China</td>
<td>www.keb.cn</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>KEB RUS Ltd.</td>
<td></td>
<td>Lesnaya str, house 30 Dzerzhinsky MO 140091 Moscow region Russian Federation</td>
<td>www.keb.ru</td>
</tr>
<tr>
<td>Spain</td>
<td>KEB Automation KG</td>
<td></td>
<td>c / Mitjer, Nave 8 - Pol. Ind. LA MASIA 08798 Sant Cuapat Sesgarrigués (Barcelona) Spain</td>
<td>www.keb.espana.de</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>KEB (UK) Ltd.</td>
<td></td>
<td>5 Morris Close Park Farm Industrial Estate Wellingborough, Northants, NN8 6XF United Kingdom</td>
<td>www.keb.co.uk</td>
</tr>
<tr>
<td>United States</td>
<td>KEB America, Inc.</td>
<td></td>
<td>5100 Valley Industrial Blvd. South Shakopee, MN 55379 United States</td>
<td>www.kebamerica.com</td>
</tr>
</tbody>
</table>